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Outline

◮ The cardiac dynamics and the RR signal.

◮ The statistical physics approach.

◮ Detrended Fluctuation Analysis.

◮ Multifractal DFA.
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The cardiac dynamics and the RR signal

◮ P wave: Atrial depolar-

ization.

◮ QRS Complex: Depolar-

ization of the ventricules.

◮ ST segment: Connets

QRS and T wave.

◮ T wave: repolarization of

the ventricules.

◮ U wave: Repolarization

of papillary muscles.
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The RR signal

◮ Offers a well mea-

surable parameter for

the cardiac activity.

◮ It is defined as the

time between two con-

secutive QRS com-

plexes.

0 2 4 6 8 10

x 10
4

0.6

0.8

1

1.2

CHF

RR beat number

R
R

 in
te

rv
al

0 2 4 6 8 10

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
R

R
 in

te
rv

al

RR beat number

NSR

0 200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1

RR beat number

R
R

 in
te

rv
al

CHF

0 200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

RR beat number

R
R

 in
te

rv
al

NSR

4



The RR signal: Characteristics

◮ It is the plot between two consecutive “maxima” of a time series.

◮ May be considered as a sort of Poincaré section of the system.

◮ Random oscillations around a mean value.

◮ Highly non stationary.
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The RR as a diffusion process

◮ We use the method of time series analysis derived from statistical

physics.

◮ Study of critical phenomena, where fluctuations at all time scale

length appear.

◮ The RR as a diffusion process.
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A simple example

◮ We plot rescaled windows of the integrated time series we get a

sort of (smooth) random walk.
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Let’s do it with white noise...
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Long-range and short-range correlations

◮ Consider a record xi, i = 1, . . . , N of equally spaced measurements.

◮ We are interested in the correlation of xi and xi+s, for different

lags s.

◮ By subtracting the average value < x > we get x̄i = xi− < x >

and we define the autocorrelation function as:

C(s) = 〈x̄ix̄i+s〉 =
1

N − s

N−s
∑

i=1

x̄ix̄i+s (1)

◮ We speak about short range correlations if there exists a time scale

s∗ for which C(s) decays exponentially, i.e. C(s) ∼ exp(−s/s∗).

◮ For long-range correlations C(s) decays as power law: C(s) ∼ s−γ ,

γ ∈ (0, 1).
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Why not?

◮ The computation of the ACF from experimental data is

problematic.

◮ Effects of trends of unknown origin, that should be distinguished

form the intrinsic fluctuations of the signal.

◮ By example, a moving average with a certain window of width w

may introduce a new time scale w and may destroy scaling behaviors

happening over times w.

◮ Very often, we do not know the origin of trends in data, and we do

not know their scales.

◮ A method for the evaluation of detrended fluctuations over

different time scales is needed.
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Detrended Fluctuation Analysis:
Introduction

◮ Characterization of long range correlated processes. C(s) ∼ s−γ ,

0 < γ < 1.

◮ Estimation of the power law scaling for non-stationary time series.

◮ Elimination of trends of different order avoids spurious detections.

◮ Applications: Cardiac dynamics, temperature recordings, wind

time series, econometrics...
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DFA: The algorithm

Given a time series s(i) (i = 1, . . . , N), three steps follow:

1. Integration of u(i) produces the profile function:

y(j) =

j
∑

i=1

[u(i)− < u >] < u >=
1

N

N
∑

i=1

u(i) (2)

y is divided in segments of length n

2. In any box, y is fitted by an l order polynomial yl
fit:

Y (i) = y(i) − yl
fit(i) (3)

3. The fluctuation function is computed:

F (n) =

(

1

N

N
∑

i=1

Y (i)2

)1/2

(4)
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◮ The procedure is repeated for increasing values of n.

◮ If F (n) ∼ nH , H is an estimation of the Hurst exponent.

◮ The connection to the scaling law of the AC function is given by:

H = 1 − γ/2, H ∈ (0.5, 1) (5)

H = 0.5 is the value of uncorrelated noise, while H ∈ (0.5, 1) may

indicate long range correlations.
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The Hurst Exponent

◮ Orginally proposed by Hurst, who studied the floods of river Nile.

◮ Given the time series x = [x1, . . . , xN ], one has to study the scaling

behavior of the function:

S2 = 〈|x(i + τ) − x(i)|2〉T ∼ τ2H (6)

where τ is the time lag and T is an average time such that T ≫ τ ,

and usually is the largest time scale of the system.

◮ H ∈ (0, 1].

◮ H links directly to the fractal dimension via D = 2 − H.

◮ The more H is high, the more x is smooth.
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Some history...

◮ Hurst computed the average yearly flood height and its cumulative

deviations.

◮ Then he computed the maximum value reached by the cumulative

deviations and compared it with the minimum, calling R this

difference.

◮ The original formula reads:

log

(

R

σ

)

= K log

(

N

2

)

R = σ

(

N

2

)K

(7)

◮ Where N the number of observations (years), σ the standard

deviation between time i − 1 and i. R was the height of the flood.

◮ He found K = 0.73.
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DFA: link with the autocorrelation
function

◮ For data without trends and zero offset x̄i = xi, and Ys(i) = Yi for

i ≤ s.

◮ In each segment ν the mean square displacement can be computed

as:

〈

Y 2(i)
〉

=

〈

i
∑

k=1

x2
k

〉

+

〈

j,k≤i
∑

k 6=j

xjxk

〉

=

i
〈

x2
〉

+

j,k≤i
∑

k 6=j

C(|k − j|) = i
〈

x2
〉

+ 2
i−1
∑

k=1

(i − k)C(k)

(8)
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◮ For large i, the second term can be approximated:

i−1
∑

k=1

C(k) ∼

i
∑

k=1

k−γ ∼

∫ i

1

k−γ dk ∼ i1−γ and

i−1
∑

k=1

kC(k) ∼ i2−γ

(9)

◮ If the data are PL correlated with γ ∈ (0, 1), this term dominates,

giving
〈

Y 2(i)
〉

∼ i2−γ (10)

◮ Using the same approximation for F (s) gives:

F (n) ∼ n1−γ/2 H = 1 − γ/2 (11)

◮ If the data are short-range or uncorrelated, one gets 〈Y 2(i)〉 ∼ i,

then H = 1/2

◮ Practically, H is extracted by linear fit of F (n) in a log-log plot.
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DFA: tips & tricks

Despite the DFA seems to be a powerful method, one should consider:

◮ Numerical stability: The core of the method is the detrending

algorithm, usually is a polynomial fit of a certain order.

◮ The least-square routine must be stable especially when dealing

with large scales (up to 1e5 points). The best I found is the e02adf

FORTRAN routine, provided by NAG.

◮ Strong systematic trends, like linear or periodic, may influence the

computation of H, and shuold be removed before the analysis.

◮ The linear fit of the fluctuation function must be very good, and

the F (s) shoul be always inspected.

◮ Always use different polynomial orders: the analysis is wrong if

different values of H are obtained.
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Workarounds and pitfalls

◮ When pre-detrending is not possible (e.g. when the origin of

strong trends is unknown) one may differentiate the time series.

◮ Then H = Hdiff + 1. Sometimes works, sometimes not...

◮ C(s) ∼ s−γ → HDFA ∈ (0, 1)

◮ Values of H > 1 may occur, and are normally considered as a bias

of the method. When obtaining such results...please...pay attention!.

◮ Always use different DFA routines.
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Application of DFA on HRV data: Outline

◮ Cardiac pathology: Congestive hearth failure.

◮ Control sample: Healthy subjects with Normal Sinusal Rythm.

◮ The DFA is applied to study the scaling behavior of RR time

series, both on large and small scales.

◮ The data come from the Physionet Banka.

ahttp://www.physionet.org
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Correlated regions in HRV during sleep
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Correlated regions in HRV during sleep
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Crossover phenomenon

◮ the fluctuation function

show a systematic cross-

over. Small scales show an

angle α1, while larger scale

show α2.
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◮ By building an (α1, α2)

diagram it is possible to

distinguish NSR and CHF

subjects.
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Multifractal DFA

◮ Extension of the DFA, for q ∈ R one gets several Fluctuation

functions:

Fq(n) =





〈

1

N

N
∑

i=1

Y (i)2

〉q/2

ν





1/q

(12)

<>ν is the average over the ν = N/n segments.

◮ (Very) Roughly speaking, it is a generalization of equation 6:

Sq = 〈|x(i + τ) − x(i)|q〉T ∼ τqH(q) (13)

◮ Fq(n) ∼ nh(q). For q = 2, H = h(2).

◮ We speak about a spectrum of Hurst exponents H(q).
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◮ f(α) has a parabolic form.

◮ A method for characterizing a multifractal set is the singularity

spectrum f(α), related to h(q) via a Legendre transform:

α = H(q) + qH ′(q) f(α) = q[α − H(q)] + 1 (14)

◮ The maximum of f(α) shows at which α is positioned the most

statistically significant part of the time series, i.e. the subsets with

maximum fractal dimension.
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MF-DFA: application on FGN

◮ When analyz-

ing white noise or

Fractional Gaussian

Noise, the value of

H(q) = H(2) ∀q.

◮ The fluctuation

functions have the

same slope.
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MF-DFA: application on the binomial MF
series

◮ The series is defined as:

xk = a
n(k−1)(1 − a)nmax−n(k−1) (15)

with a ∈ (0.5, 1) and n(k) is the number of ones in the binary

representation of k
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◮ The slope of the fluctuation functions increases with q.

◮ The spectrum of the Hurst exponents is monotonous decreasing

curve.
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MF-DFA: Tips, triks, workarounds and
pitfalls

The same as for DFA...furthermore:

◮ For negative q the algorithm is more unstable, then always look at

the fluctuation functions.

◮ Repeat the analysis by shuffling the time series: it should be

α∗ = 0.5 and Wα ∼ 0.05.

◮ Beware from spurious MF due to finite size. For a good analysis

one should use at least 5e5 points.

◮ Less points are possible, but the fit of the Fq(s) must be very

good.
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MF-DFA for the analysis of HRV data

◮ The RR time series show different self-similarity at different scales.

◮ Characterization of the f(α) spectra using two indicators:

• α∗: the value of α for which the spectrum has its maximum. It

indicates the subset with maximum fractal dimension among all

subsets of the time series.

• Wα: The width of f(α) computed in the range q ∈ [−3, 3].

• For monofractal signals, the f(α) spectrum is singular, but,

because of the finite size a residual MF is always found.
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Characterization of HRV using α
∗ and Wα
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