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Groovy Geometry Table

All Triangles Sector of Circle Right Circular Cylinder, Right Prism,

1 5 {think piece of pizza) or Box (flat base, flat top)
Area= = base - height
) g il ( 0 ) Volume=A- h
Equilateral Triangle 360° {Ais the area of the base.)

0 is th tral ang|
(@118 the ol anle) Lateral Surface Area=
Arc Length= 23'rr( 9 ) Fiheight

360° (Pis the perimeter

Right Triangle ;

Pythagorean Theorem: a*+ b= ¢?(c (Arc Length is the length [or circumference] of the base.)
; ; of the crust,

is the hypotenuse.) ] Coordinate Geometry

Sphere ; :
Parallelogram P 4 Given two points

Volume = = 7r®

. lI."’_
side? /3

Area=

Area= base- height 3 (x1,y1) and (x;,y,)
Trapezoid Surface Area=4xr? Sl = gz_ ?
base,+ base, , - Cone or Pyramid
Area= ——-—"""L. hejght : el P i) L Pl
2 (flat base,]pomtytop] Bistinhee J@- X))+ (Vo= y1)?

ircl i iae ; .
Circle i Vofume-BA h Mfdpo:‘nt:(x’ﬂz y1+Vz)
Area=mr (Ais the area of the base.) 2 0. )

Circumference= 27tr= md

Trippin’ Trig Table

Right Triangle Trig |dentities Formulas

SohCahToa: ' Reciprocal Identities: Half—AngIe Formulas:

sin@:% cscG:% cscﬂ=ﬁ sin 9——(1—30529)
_A il % 691 vl
cos6 = H secO A sec@-mse cos 9—2(1+c:0526)
tan@ = % cotd = % cotf = ta:! 5 D'oubie—An.gIe Formulas:
; b1 sin26 = 2sin@cos O

Degrees and Radians Quotient Identities: :

L diape=E0° _ sin@ c0s260=2cos°0 -1
9 radians=360° 3 radians= 60 tan®d = S

i Reduction Formulas:
7 radians= 180 7 radians= 45° cotl = 086 sin(—-@) =
I

. =-sin@
s | sin@
7 radians= 90 cos(—60)=cosb

& radians= 30" Pythagorean Identities:

in? ‘9= tan(—0) =—tan®
To convert from radians to degrees, Sin'0 +cos 6=1 59)
multlplybymﬂ tan@+1=sec’®
D)
To conver‘rfrum degrees to 1+cot°@=csc’ O

rad;ans mumplyr hy 180"
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Dandy Derivative Table

e i wedyfid
Product Hule.a(w) =yv+vu Quotient Rule: == = (V)
d

E{"C 0
d n n-1

4.5(-)( =nx

'.-'.ia'=a"|na

sinX=cosx
dx

d S a il it
10. F cosX=-—sinx H'o‘x tanx=sec x 12.-%L cotx=—csc’x

‘IB.——d—secx:secxtanx 14.icscx=—cscxcotx 15.
ax dx

ax "
9.9
% x
2.4
Tdx
4
dx

arcsinx=
JT25E

d 1

17.5—arctanx= 18.iarccntx=
dx

=

1+x° dx 1+x
-1

|x]/x*-1

g i
16. - arccosx=

19. — d arcsec x= 1 Zﬂ.j—arccscx:

dx |x|/x*=1 dx

Handy-Dandy Integral Table
1 [dx=x+C

d
8 [&=mix|+cC

n=1
2 [xde=X g+ C(n#1) 3.fe”dx:e+8

5. [(a*de=pa*+ C 6. [Inxdx=x (Inx=1)+C

7k fsinxdx=-cosx+ c
1G.fcotxdx:|n|sinx|+6‘
13.fseé2xdx:tanx+ C

‘[B.fcsc xcotxdx=—cscx+ C

6.arr:secuﬂ‘l‘ 20] =——|n|

8.fcosxdx: sinx+ C

9. ftanxdxz—ln|cosx|+ C

11.fsecxdlenlsecx+tanx|+c 12.fcscxdx=—ln|cscx+ cotx|+C 3

14.[cscﬁxdx=—cotx+ C

1?.f ,% = arcsin% +C

.l’a_

x+a

19[}(“
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r'le mere thought of having to take a required calculus course is enough to
make legions of students break out in a cold sweat. Others who have no
intention of ever studying the subject have this notion that calculus is impos-
sibly difficult unless you happen to be a direct descendant of Einstein.

Well, I'm here to tell you that you can master calculus. It’s not nearly as tough
as its mystique would lead you to think. Much of calculus is really just very
advanced algebra, geometry, and trig. [t builds upon and is a logical exten-
sion of those subjects. If you can do algebra, geometry, and trig, you can do
calculus.

But why should you bother — apart from being required to take a course? Why
climb Mt. Everest? Why listen to Beethoven's Ninth Symphony? Why visit the
Louvre to see the Mona Lisa? Why watch The Simpsons? Like these endeavors,
doing calculus can be its own reward. There are many who say that calculus

is one of the crowning achievements in all of intellectual history. As such, it’s
worth the effort. Read this jargon-free book, get a handle on calculus, and join
the happy few who can proudly say, “Calculus? Oh, sure, I know calculus.

It's no big deal.”

About This Book

Calculus For Dummies is intended for three groups of readers: students taking
their first calculus course, students who need to brush up on their calculus to
prepare for other studies, and adults of all ages who’d like a good introduction
to the subject.

If you're enrolled in a calculus course and you find your textbook less than
crystal clear, this is the book for you. It covers the most important topics
in the first year of calculus: differentiation, integration, and infinite series.

If you've had elementary calculus, but it’s been a couple of years and you
want to review the concepts to prepare for, say, some graduate program,
Calculus For Dummies will give you a thorough, no-nonsense refresher course.

Non-student readers will find the book’s exposition clear and accessible.
Calculus For Dummies takes calculus out of the ivory tower and brings it
down to earth.
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This is a user-friendly math book. Whenever possible, 1 explain the calculus
concepts by showing you connections between the calculus ideas and easier
ideas from algebra and geometry. | then show you how the calculus concepts
work in concrete examples. Only later do 1 give you the fancy calculus formu-
las. All explanations are in plain English, not math-speak.

Conventions Used in This Book

The following conventions keep the text consistent and oh-so-easy to follow.

»* Variables are in ifalics.
1~ Calculus terms are italicized and defined when they first appear in the text.

+* In the step-by-step problem-solving methods, the general action you need
to take is in bold, followed by the specifics of the particular problem.

How to Use This Book

This book, like all For Dummies books, is a reference, not a tutorial. That may
seem like a strange approach for a math book, but the basic idea is that the
chapters can stand on their own. If you don't want to read the book from
cover to cover. you don’t have to. Now, if you're an absolute beginner, you
probably should start with Chapter 1 and work your way through the book,
but if you already know calculus, feel free to skip around and read only the
topics that interest you.

It can be a great aid to true understanding of calculus — or any math topic for
that matter — to focus on the why in addition to the how-to. With this in mind,
T've put a lot of effort into explaining the underlying logic of many of the ideas
in this book. If you want to give your study of calculus a solid foundation, you
should read these explanations. But if you're really in a hurry, you can cut to
the chase and read only the important introductory stuff, the example prob-
lems, the step-by-step solutions, and all the rules and definitions next to the
icons. You can then read the remaining exposition only if you feel the need.

[ find the sidebars interesting and entertaining. (What do you expect? | wrote
them!) But you can skip them without missing any essential calculus. No, you
won't be tested on this stuff.
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Foolish Assumptions

Call me crazy, but [ assume.. . .

- ¥ You know at least the basics of algebra, geometry, and trig.

If you're rusty, Part Il (and the Cheat Sheet) contains a good review of
these pre-calculus topics. Actually, if you're not currently taking a calculus
course, and you're reading this book just to satisfy a general curiosity
about calculus, you can get a good conceptual picture of the subject with-
out the nitty-gritty details of algebra, geometry, and trig. But you won't, in
that case, be able to follow all the problem solutions. In short, without the
pre-calculus stuff, you can see the calculus forest, but not the frees. If you
are enrolled in a calculus course, you've got no choice — you've got to
know the trees,

* + You're willing to do some w__ _

No, not the dreaded w~word! Yes, that's w-o-r-k, work. I've tried to make
 this material as accessible as possible, but it is calculus after all. You can’t
learn calculus by just listening to a tape in your car or taking a pill — not

yet anyway.

Is that too much to ask?

How This Book Is Organized

The book is divided into parts, the parts into chapters and the chapters into
topics and subtopies. (T've applied for a patent for this scheme.)

Part I: An Overview of Calculus

After reading Part I, you'll be one of a select few who can actually answer the
questions “What is calculus?,” “What's it good for?,” and “How does it work?”
I discuss here several practical uses of calculus and how it has changed the
world in countless ways. | explain, in plain English, the two big calculus ideas:
differentiation and integration. Lastly, I show you the key mathematical idea
that makes calculus work: the concept of a limit.
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Part 1I: Warming Up with Calculus
Prerequisites

Part Il is a review of the algebra (including functions) and trig (including
geometry) that you need for calculus. If you don’t need such a review, skip
it, or just use it as a reference. If, on the other hand, you're a bit rusty, it
wouldn't be a bad idea to brush up on this stuff — at least skim this review.
You can't do calculus without these prerequisites — especially algebra.

Part I1I: Limits

The mathematics of limits underlies all of calculus. Limits allow us, in a sense,
to zoom in on the graph of a curve — further and further and further ad infini-
tum — until it becomes straight. Once it's straight, regular-old algebra and
geometry can be used. This is the magic of calculus.

Part 1U: Differentiation

Differentiation is the first of the two big calculus ideas; integration (Part V) is
the second. Differentiation and integration constitute the core of the calculus
curriculum. Differentiation is the process of finding a derivative, and a deriva-
tive is just a rate like miles per hour or dollars per item. On the graph of a
curve, the derivative tells you the curve’s slope or steepness.

In this part, you'll discover differentiation rules for beginners, differentiation
rules for experts, what the derivative tells you about the shape of a curve,
and how to use the derivative to solve word problems.

Part U: Integration and Infinite Series

Integration, big idea number two, is fancy addition —very fancy. That’s really
all it is. In a nutshell, it's the process of taking a shape whose area you can't
directly determine, cutting it up into tiny bits whose areas you can determine,
and then adding up all the bits to get the area of the whole. This part gives you
the scoop on integration techniques for beginners, integration techniques for
experts, numerical or approximate integration, and how to use integration to
do word problems.

What about infinite series? Think about this for a second: If you start 1 yard
away from a wall then walk halfway there, then halfway again, then halfway
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again (I'll bet you've heard this one), how long will it take you to get to the
wall? Answer: It depends. There are an infinite number of steps in this process,
so, if each step takes, say, 1 second, you'll never get there. If, however, you can
maintain a constant speed of, say, 1 yard per second, not stopping or slowing
down at the end of each step, you'll still take an infinite number of steps, but
you'll get to the wall in 1 second flat!

This surprising result of adding up an infinite number of numbers, but getting
a finite sum is what the last chapter of Part V is all about: It's a topic full of
bizarre paradoxes.

Part UI: The Part of Tens

Here you'll find three top-ten lists: ten things to remember, ten things to
forget, and ten things you can get away with if your calculus teacher was
born yesterday (my favorite).

Icons Used in This Book

Keep your eyes on the icons:

Next to this icon are the essential calculus rules, definitions, and formulas
you should definitely know.

These are things you need to know from algebra, geometry, or trig, or things
you should recall from earlier in the book.

The bull's-eye icon appears next to things that will make your life easier.
Take note.

This icon highlights common calculus mistakes. Take heed.

In contrast to the Critical Calculus Concepts, you generally don’t need to
memorize the fancy-pants formulas next to this icon unless your calc teacher
insists.

5
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In this part . . .

answer the oft-asked questions, “What is calculus?,”

“What's it good for?,” and “How does it work?" I discuss
here several practical uses of calculus and how it has
changed the world in countless ways. I explain the two big
calculus ideas: differentiation and infegration. Lastly, | show
you the key mathematical idea that makes calculus work:
the concept of a limit.




Chapter 1

What Is Calculus?
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"My best day in Calc 101 at Southern Cal was the day I had to cut class to gel
a root canal ”

— Mary Johnson
‘1 keep having this recurring dream where my calculus professor is coming
after me with an axe.”
— Tom Franklin, Colorado College sophomore

“Calculus is fun, and it's so easy. I don’t get what all the fuss is about. ™
— Sam Einstein, Albert’s great grandson

In this chapter, | answer the question “What is calculus?” in plain English,
and [ give you real-world examples of how calculus is used. After reading
this and the following two short chapters, you will understand what calculus
is all about. But, here’s a twist, why don't you start out on the wrong foot by
briefly checking out what calculus is not.

What Calculus Is Not

No sense delaying the inevitable. Ready for your first calculus test? Answer
True or False.
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TF Unless vou actually enjoy wearing a pocket protector, you've got no
business taking calculus.

TF Studying calculus is hazardous to your health.
TF Calculus is totally irrelevant.

False, false, false! There's this mystique about calculus that it’s this ridiculously
difficult, incredibly arcane subject that no one in their right mind would sign up
for unless it was a required course.

Don't buy into this misconception. Sure calculus is difficult — I'm not going to
lie to you — but it's manageable, doable. You made it through algebra, geome-
try, and trigonometry. Well, calculus just picks up where they leave off — it's
simply the next step in a logical progression. !

And calculus is not a dead language like Latin, spoken only by academics. It is
the language of engineers, scientists, and economists — okay, so it’s a couple
steps removed from your everyday life and unlikely to come up at a cocktail
party. But the work of those engineers, scientists, and economists has a huge
impact on your day-to-day life — from your microwave oven, cell phone, TV,
and car to the medicines you take, the workings of the economy, and our
national defense. At this very moment, something within your reach or within
your view has been impacted by calculus.

So What Is Calculus Already?

Calculus is basically just very advanced algebra and geometry. In one sense,
it's not even a new subject — it takes the ordinary rules of algebra and geome-
try and tweaks them so that they can be used on more complicated problems.
(The rub, of course, is that darn other sense in which it is a new and more diffi-
cult subject.)

Look at Figure 1-1. On the left is a man pushing a crate up a straight incline.
On the right, the man is pushing the same crate up a curving incline, The
problem, in both cases, is to determine the amount of energy required to
push the crate to the top. You can do the problem on the left with regular
math. For the one on the right, you need calculus (assuming you don't know
the physics shortcuts).

For the straight incline, the man pushes with an unchanging force, and the
crate goes up the incline at an unchanging speed. With some simple physics
formulas and regular math (including algebra and trig), you can compute
how many calories of energy are required to push the crate up the incline,
Note that the amount of energy expended each second remains the same.
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For the curving incline, on the other hand, things are constantly changing. The
steepness of the incline is changing — and not just in increments like it's one
steepness for the first 10 feet then a different steepness for the next 10 feet —
it’s constantly changing. And the man pushes with a constantly changing force —
the steeper the incline, the harder the push. As a result, the amount of energy
expended is also changing, not every second or every thousandth of a second,
but constantly changing from one moment to the next. That's what makes it a
calculus problem. By this time, it should come as no surprise to you that calcu-
lus is described as “the mathematics of change.” Calculus takes the regular
rules of math and applies them to fluid, evolving problems.

For the curving incline problem, the physics formulas remain the same, and
the algebra and trig you use stay the same. The difference is that — in contrast
to the straight incline problem, which you can sort of do in a single shot —
you've got to break up the curving incline problem into small chunks and do
each chunk separately. Figure 1-2 shows a small portion of the curving incline
blown up to several times its size.

Calculus problem

11
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When you zoom in far enough, the small length of the curving incline becomes
practically straight. Then, because it’s straight, you can solve that small chunk
just like the straight incline problem. Each small chunk can be solved the same
way, and then you just add up all the chunks.

That'’s calculus in a nutshell. It takes a problem that can’t be done with regu-
lar math because things are constantly changing — the changing quantities
show up on a graph as curves — it zooms in on the curve till it becomes
straight, and then lets regular math finish off the problem.

What makes calculus such a fantastic achievement is that it actually zooms in
infinitely. In fact, everything you do in calculus involves infinity in one way or
another, because if something is constantly changing, it's changing infinitely
often from each infinitesimal moment to the next. '

Real-World Examples of Calculus

MCERITEEESTE]
Figure 1-3:
Without and
with
calculus.

So, with regular math you can do the straight incline problem; with calculus
you can do the curving incline problem. Here are some more examples.

With regular math you can determine the length of a buried cable that runs
diagonally from one corner of a park to the other. With calculus you can
determine the length of a cable hung between two towers that has the shape
of a catenary (which is different, by the way, from a simple circular arc or a
parabola), Knowing the exact length is of obvious importance to a power
company planning hundreds of miles of new electric cable. See Figure 1-3.

‘56\%
! @@56 6 blocks
! <5
—— 200 yards —
H & Calculus problem:
—— 8blocks —— Hows long is the cable?

Regular math problem:
How lang is the cable?
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You can calculate the area of the flat roof of a home with regular math. With
calculus you can compute the area of a complicated, nonspherical shape like
the dome of the Houston Astrodome. Architects designing such a building
need to know the dome’s area to determine the cost of materials and to figure
the weight of the dome (with and without snow on it). The weight, of course,
is needed for planning the strength of the supporting structure. Check out
Figure 14,
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With regular math and some simple physics, you can calculate by how
much a quarterback must lead his receiver to complete a pass. Note that
the receiver runs in a straight line and at a constant speed. But when NASA.
in 1975, calculated the necessary “lead” for aiming the Viking I at Mars, it
needed calculus because both the Earth and Mars travel on elliptical orbits
(of different shapes) and the speeds of both are constantly changing — not to
mention the fact that on its way to Mars, the spacecraft is affected by the
different and constantly changing gravitational pulls of the Earth, the moon,
Mars, and the sun. See Figure 1-5,

You see many real-world applications of calculus throughout this book. The
differentiation problems in Part IV all involve the steepness of a curve — like
the steepness of the curving incline in Figure 1-1. In Part V, you do integration
problems like the cable-length problem shown back in Figure 1-3. These
problems involve breaking up something into little sections, calculating each
section, and then adding up the sections to get the total. More about this in
Chapter 2.
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Regqular math problem:
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Calculus problem:
What's the proper ‘lead” for
*hitting” Mars?

Failure to complete this
"pass’ is a big deal.




Chapter2

The Two Bigmais of Calculus:
Differentiation and Integration

In This Chapter
» Delving into the derivative: It’s a rate or a slope
- Investigating the integral — addition for experts

> Infinite series: Achilles versus the tortoise — place your bets

Fis book covers the two main topics in calculus — differentiation and
integration — as well as a third topic, infinite series. All three topics touch
the earth and the heavens because all are built upon the rules of ordinary math
and all involve the idea of infinity.

Defining Differentiation

Differentiation is the process of finding a derivative, and the derivative of a
curve is just the fancy calculus term for the curve’s slope or steepness: the
slope of a curve is also a simple rate like miles per hour or profit per item,

The derivative is a slope

In algebra, you learned about the slope of a line — it's equal to the ratio of

the rise to the run. In other words, Slope = ﬁfg See Figure 2-1. Let me guess:

A sudden rush of algebra nostalgia is flooding over you.
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In Figure 2-1. the rise is about half as long as the run, so the line has a slope of
about .

On a curve, the slope is constantly changing, so you need calculus to determine
its slope. See Figure 2-2.

rise

Just like the line in Figure 2-1, the line in Figure 2-2 has a slope of about Y,
And the slope of this line is the same at every point between A and B. But you
car see that, unlike the line, the steepness of the curve is changing between
A and B. At A, the curve is less steep than the line, and at B the curve is
steeper than the line. What do you do if you want the exact slope at, say,
point C? Can you guess? Time’s up. Answer: You zoom in. See Figure 2-3.

ﬂ

run
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When you zoom in far enough — really far, actually infinitely far — the little
piece of the curve becomes straight, and you can figure the slope the old-
fashioned way. That's how differentiation works.

The derivative is a rate

Because the derivative of a curve is the slope — which equals ﬁ Or rise per
run — the derivative is also a rate, a this per that like miles per hour or gallons
per minute (the name of the particular rate simply depends on the units used
on the x and y axes). The two graphs in Figure 2-4 show a relationship
between distance and time — they could represent a trip in your car.

¥ (miles) ¥ [miles)
A&
20+ 700
600 - 500 —
500 500
. B
e T L
Figure 2-9: 300 300 —
Average 200+ 200
rate and C
instanta- 07 A 100
Neous rate. < e e L S S— - X — .
T AP 2 3. ARG E RS 6 ST sl o st oot s i sl s Sl o ey
Regular math problem: Calculus problem:
What's the average What's the instantaneous
rate between A and B? rate at C?

A regular algebra problem is shown on the left in Figure 2-4. If you know where
A and B are, you can determine the slope between A and B, and, in this prob-
lem, that slope gives you the average rate in miles per hour for the interval
from A to B.

For the problem on the right, on the other hand. ¥ou need calculus. Using the
derivative of the curve, you can determine the exact slope or steepness at
point C. Just to the left of C the slope is lower, and just to the right of C the
slope is higher. But precisely at C, for a single infinitesimal moment, you get
a slope that’s different from the neighboring slopes. The slope for this single
infinitesimal point on the curve gives you the instantaneous rate in miles per
hour at point C,
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Investigating Integration

fae = on]
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Integration is the second big idea in calculus, and is basically just fancy addi-
tion. Integration is the process of cutting up an area into tiny sections, figuring
the areas of the small sections, and then adding up the little bits of area to get
the whole area. Figure 2-5 shows two area problems — one that you can do
with geometry and one where you need calculus.

Geometry problem: Calculus problem:
What's the shadaed area? What's the shaded area?

¥ ¥

‘ !
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b

The shaded area on the left is a simple rectangle, so its area, of course, equals
length times width. But you can't figure the area on the right with regular geom-
etry because there’s no area formula for this funny shape. So what do you do?
Why, zoom in, of course. Figure 2-6 shows the top portion of a narrow strip of
the weird shape blown up to several times its size.

b

e O o0

0l'z4saw

When you zoom in as shown in Figure 2-6, the curve becomes practically
straight, and the further you zoom in, the straighter it gets — with integra-
tion, you actually zoom in infinitely close, sort of. You end up with the shape
on the right in Figure 2-6, which is an ordinary trapezoid — or, if you want to
get really basic, it’s a triangle sitting on top of a rectangle. Because you can
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compute the areas of rectangles, triangles, and trapezoids with ordinary
geometry, you can get the area of this and all the other thin strips and then
add up all these areas to get the total area. That's integration.

Figure 2-7 shows two graphs of a city’s electrical energy consumption on a
typical summer day. The horizontal axis represents the number of hours after
midnight, and the vertical axis the amount of power (in kilowatts) used by
the city at different times during the day.

Geometry problem: Calculus problem:
What's the total number of kilowatt-hours What's the total number of kilowatt-hours
of energy used between 0 and 247 of energy used between 0 and 247
¥ (kilowatts) ¥ |kilowztts)

&
300,000 300,000
200,000 1 200,000 +
100,000 100,600

oo I + — ey
a 3 [ 9 12 15 18 21 24 {hours) Elll 3 B 3 12 15 138 a1 M [{hours|

The crooked line on the left and the curve on the right show how the number
of kilowatts of power depends on the time of day. In both cases, the shaded
area gives the number of kilowatt-hours of energy consumed during a typical
24-hour period. The oversimplified problem on the left can be done with regu-
lar geometry. But the relationship between the amount of power used and the
time of day is more complicated than a crooked straight line, so you need cal-
culus to determine the total area. In the real world, the relationship between
different variables is rarely as simple as a straight-line graph. This is what
makes calculus so useful.

Sorting Out Infinite Series

Infinite series deal with the adding up of an infinite number of numbers. Don't
try this on your calculator — unless you've got a lot of extra time on your
hands. Here's a simple example. The following sequence of numbers is gener-
ated by a simple doubling process — each term is twice the one before it:

1,2,4,8, 16, 32, 64, 128, . ..

19
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The infinite series associated with this sequence of numbers is just the sum of
the numbers:

1+2+4+8+16+32+64+128+...

Divergent series

The previous series of doubling numbers is divergent because if you continue
the addition indefinitely, the sum will grow without limit. And if you could
add up “all” the numbers in this series — that's all infinitely many of them —
the sum would be infinity. Divergent usually means — there are exceptions —
that the series adds up to infinity. .

Divergent series are rather uninteresting because they do what vou expect. You
keep adding more numbers, so the sum keeps growing, and if you continue this
forever, the sum grows to infinity. Big surprise.

Convergent series

Convergent series are much more interesting. With a convergent series, you
also keep adding more numbers, the sum keeps growing, but even though
you add numbers forever and the sum grows forever, the sum of all the infi-
nitely many terms is a finite number. This surprising result brings me to
Zeno's famous paradox of Achilles and the tortoise. (That's Zeno of Elea,

of course, from the 5th century B.c.)

Achilles is racing a tortoise — some gutsy warrior, eh? Our generous hero
gives the tortoise a 100-yard head start. Achilles runs at 20 mph; the tortoise
“runs” at 2 mph. Zeno used the following argument to “prove” that Achilles
will never catch or pass the tortoise. If you're persuaded by this “proof,” by
the way, you've really got to get out more.

Imagine that you're a journalist covering the race for Spartan Sports Weekly,
and you're taking a series of photos for your article. Figure 2-8 shows the situ-
ation at the start of the race and your first two photos.

You take your first snapshot the instant Achilles reaches the point where

the tortoise started. By the time Achilles gets there, the tortoise has *raced”
forward and is now 10 yards ahead of Achilles. (The tortoise moves a tenth as
fast as Achilles, so in the time it takes Achilles to travel 100 yards, the tortoise
covers a tenth as much ground, or 10 yards.) If you do the math, you find that
it took Achilles about 10 seconds to run the 100 yards. (For the sake of argu-
ment, let's call it exactly 10 seconds.)
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You have a really fast Polaroid, so you look at your first photo and note pre-
cisely where the tortoise is as Achilles crosses the tortoise’s starting point.
The tortoise’s position is point A in the first photo in Figure 2-8. Then you
take your second photo when Achilles reaches point A, which takes him
about one more second, In that second, the tortoise has moved ahead to
point B. You take your third photo (not shown) when Achilles reaches point B
and the tortoise has moved ahead to point C.

Every time Achilles reaches the point where the tortoise was, you take
another photo. There is no end to this series of photographs. Assuming you
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and your camera can work infinitely fast, you will take an infinite number of
photos. And every single time Achilles reaches the point where the tortoise
was, the tortoise has covered more ground — even if only a millimeter or a
millionth of a millimeter. Thus, the argument goes, because you can never
get to the end of your infinite series of photos, Achilles can never catch the
tortoise.

Well, as everyone knows, Achilles does in fact reach and pass the tortoise —
thus the paradox. The mathematics of infinite series explains how this infinite
series of time intervals sums to a finite amount of time — the precise time
when Achilles passes the tortoise. Here's the sum for those who are curious:

10 sec+ 1 sec+ 0.1 sec +0.01 sec+0.001 sec+. ..
=11.111. .. sec, or 11% seconds.

Achilles passes the tortoise after 11} seconds at the 111}-yard mark.

Infinite series is a topic rich with bizarre, counterintuitive paradoxes. You see
more of them in Part V.
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Why Calculus Works
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In This Chapter

= Using limits to zoom in on curves

b= Slope equals rise over run
I Area of a triangle equals one-half base times height

» The Pythagorean theorem: a®+ b*= ¢*
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of zooming in on a curve till it looks straight. The mathematics of calculus
works because of this basic nature of curves — that they’re locally straight —
in other words, curves are straight at the microscopic level. The earth is
round, but to us it looks flat because we're sort of at the microscopic level
when compared to the size of the earth. Calculus works because once curves
are straight, you can use regular algebra and geometry with them. The zooming-
in process is achieved through the mathematics of limits.

Ii you read Chapters 1 and 2, you've heard me talk a lot about the process

The Limit Concept: A Mathematical
Microscope

The mathematics of limits is the microscope that zooms in on a curve. Here'’s
how a limit works. Say you want the exact slope or steepness of the parabola
y=x"at the point (1, 1). See Figure 3-1.
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parahola
¥=Xx2witha
tangent line
at(1,1].
e e s ]

How steep is this
tangent line?

With the slope formula from algebra, you can figure the slope of the line
between (1, 1) and (2, 4). From (1, 1) to (2, 4), you go over 1 and up 3, so the
slope is #, or just 3. But you can see in Figure 3-1 that this line is steeper than
the tangent line at (1, 1) that shows the parabola's steepness at that specific
point. The limit process sort of lets you slide the point that starts at 2.4
down toward (1, 1) till it’s a thousandth of an inch away, then a millionth,
then a billionth, and so on down to the microscopic level. If you do the math,
the slopes between (1, 1) and your moving point would look something like
2,001, 2.000001, 2.000000001, and so on. And with the almost magical mathe-
matics of limits, you can conclude that the slope at (1, 1) is precisely 2. even
though the sliding point never reaches (1, 1). (If it did, you'd only have one
point left and you need two separate points to use the slope formula.) The
mathematics of limits is all based on this zooming-in process, and it works,
again, because the further you zoom in, the straighter the curve gets.

What Happens When You Zoom In

Figure 3-2 shows three diagrams of one curve and three things you might like
to know about the curve: 1) the exact slope or steepness at point C, 2) the
area under the curve between A and B, and 3) the exact length of the curve
from A to B. You can't answer these questions with regular math because the
regular math formulas for slope, area, and length work for straight lines (and
simple curves like circles). but not for weird curves like this one.

The first row of Figure 3-3 shows a magnified detail from the three diagrams
of the curve in Figure 3-2. The second row shows further magnification, and
the third row yet another magnification. You can see how each magnification
makes the curves straighter and straighter and closer and closer to the diag-
onal line. This process is continued indefinitely.
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Finally, Figure 34 shows the result after an “infinite” number of magnifications —
sort of. You can think of the lengths 3 and 4 in Figure 344 (no pun intended) as
3 and 4 millionths of an inch, no, make that 3 and 4 billionths of an inch, no,

trillionths, no, gazillionths, . . ..

Chapter 3: Why Calculus Works

A L zoomin
{322 Beknal

Zoom in
|see below)

Zoom in
{s2e below}

How steep is the curve at C7

What's the area under the
curve between A and B?

What's the length of the
curve from A to B?
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Figure 3-&:
Your final
destina-
tion —

the sub,
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subatomic
level.
TR

This is how ] This is how This is how
differantiation works. integration works — sort of. arc length works.
C 3 3 3
4 4 4

Slope equals ;.'% _ The area of & triangle equals The Pythagorean theorem
so the slope of the diagonal is %‘ 5 base x height sothisareaisB.  |a®+ B2 = cf) gives you the length
of the hypotenuse — it's 5.

After zooming in “forever,” the curve is perfectly straight and now regular
algebra and geometry formulas work.

For the diagram on the left in Figure 34, you can now use the regular slope
formula from algebra to find the slope at point C. It's exactly ¥ — that’s the
answer to the first question in Figure 3-2.

For the diagram in the middle, the regular triangle formula from geometry
gives you an area of 6. So to get the total shaded area shown in Figure 3-2,
you have to add the area of the thin rectangle under this triangle (the thin
strip in Figure 3-2 shows the basic idea), repeat this process for all the other
narrow strips, and then just add up all the little areas.

And for the diagram on the right, the regular Pythagorean theorem from
geometry gives you a length of 5. Then to find the total length of the curve
from A to B in Figure 3-2, you do the same thing for the other minute sections
of the curve and then add up all the little lengths.

Well, there you have it, Calculus uses the limit process to zoom in on a curve
till it's straight. After it’s straight, the rules of regular-old math apply. Calculus
thus gives ordinary algebra and geometry the power to handle complicated
problems involving changing quantities (which on a graph show up as CLITEes).
This explains why calculus has so many practical uses because if there’s some-
thing you sure can count on — in addition to death and taxes — it's that things
are always changing.

Two Caveats — or Precision, Preschmidgen

Not everything in this chapter (or this book for that matter) will satisfy the
high standards of the Grand Poobah of Precision in Mathematical Writing.
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1 may lose my license to practice
mathematics

With regard to the middle diagrams in Figures 3-2 through 3-4, I'm playing a bit
fast and loose with the mathematics. The process of integration — finding the
area under a curve — doesn’t exactly work the way I explained. It's not really
wrong, just kind of sideways. But — I don't care what anybody says — that’s
my story and I'm stickin’ to it. Actually, it's not a bad way to think about how
integration works, and, anyhow, this is only an introductory chapter.

What the heck does “infinity”
really mean?

The second caveat is that whenever [ talk about infinity — like in the last sec-
tion where [ discussed zooming in an infinite number of times — I do some-
thing like put the word “infinity” in quotes or say something like “you sort of
zoom in forever.” I do this to cover my butt. Whenever you talk about infinity,
you're always on shaky ground. What would it mean to zoom in forever or an
infinite number of times? You can't do it — you'd never get there. We can
imagine — sort of — what it’s like to zoom in forever, but there's something
a bit fishy about the idea — and thus the qualifications.
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In this part . . .

] give you a quick review of the algebra (including func-
tions) and trig (including geometry) that you need for
calculus. If you don't need such a review, skip it, or just
use it as a reference. If, on the other hand, you're a bit
rusty, it wouldn't be a bad idea to brush up on this stuff —
at least skim this review. You can't do calculus without
these prerequisites — especially algebra.




Chapter 4
Pre-Algebra and Algebra Review

In This Chapter

= Winning the fraction battle: Divide and conquer
» Boosting your powers

» Getting to the root of roots

& Laying down the laws of logarithms

> Having fun with factoring

- Hanging around the quad solving quadratics

29 e

Igebra is the language of calculus. You can't do calculus without algebra

any more than you can write Chinese poetry without knowing Chinese.
So, if your pre-algebra and algebra are a bit rusty — you know, all those rules
for dealing with algebraic expressions, equations, fractions, powers, roots,
logs, factoring, quadratics, yada, yvada, yada—make sure you review the
following basics.

Fine-Tuning Your Fractions

Open a calculus book to any random page and you'll very likely see a
fraction —you can't escape them. Dealing with them requires that you
know a few rules.

Some quick rules

First is a rule that’s simple but very important because it comes up time and
time again in the study of calculus:
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The denominator of a fraction can never equal zero.

0 equals zero, but % is undefined.

5
It's easy to see why % is undefined when you consider how division works:

3_
ot
This tells you, of course, that 2 goes into 8 four times: in other words,

942+ 2+2=8 Well how many zeros would you need to add up to make 57

You can't do it, and so you can't divide 5 (or any other number) by zero.
Here's another quick rule.

The reciprocal of a number or expression is its multiplicative inverse—which
is a fancy way of saying that the product of something and its reciprocal is 1.
To get the reciprocal of a fraction, flip it upside down. Thus, the reciprocal of
% is % the reciprocal of 6, which equals % is % and the reciprocal of x - 2is

1

x—2

Multiplying fractions

Adding is usually easier than multiplying, but with fractions, the reverse is
true — so I want to deal with multiplication first.

Multiplying fractions is a snap —just multiply straight across the top and
straight across the bottom:

230 A) s R
5 4-30-10 ad

==}
Rn
&

Dividing fractions

Dividing fractions has one additional step: You flip the second fraction and
then multiply — like this:

_.3_ — i
10 " 5
= % = }1—‘:6 (now cancela 5 from the numerator and denominator)
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AP

Note that you could have canceled before multiplying, Because 5 goes into 5
one time, and 5 goes into 10 two times, you can cancel a 5:

w3l 3

0 4 8

Also note that the original problem could have been written as

ml.hl5|m

Adding fractions

You know that
23

7

=12

=Jjen

+

=1l

You can add these up like this because you already have a common denomi-
nator. It works the same with variables:

a., b_a+bh
E+E-—.

!

Notice that wherever you have a 2 in the top equation, an a is in the bottom
equation; wherever a 3 is in the top equation, a b is in the bottom equation:
and ditto for 7 and c. This illustrates a powerful principle:

Variables always behave exactly like numbers.

So, if you're wondering what to do with the variable or variables in a prob-
lem, ask yourself how you would do the problem if there were numbers in the
problem instead of the variables. Then do the problem with the variables the
same way. This is illustrated by the following example:

b d
You can’t add these fractions like you did in the previous example because this
problem has no common denominator, Now, assuming you're stumped, do the

problem with numbers instead of variables. Remember how to add % + E? I'm
not going to simplify each line of the solution. You'll see why in a minute.

1. Find the least common denominator (actually, any common denomi-
nator will work when adding fractions), and convert the fractions.

The least common denominator is 5 times 8, or 40, so convert each frac-
tion in:tJ'o 40ths:

2.3
578

S8 i3S

S

_2:8 3-5 (8:5equals5-8 so you can reverse the order. These
5-8 58 fractions are 40ths, but | want to leave the 5-8 in the

denominators for now)

33
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2. Add the numerators and keep the common denominator unchanged:

= &;83_3 (You can see that this equals m—;{jﬁ or % )
Now vou're ready to do the original problem, £ 4+ £ In this problem, you
have an ¢ instead of a 2, a b instead of a 5, a ¢ instead of a 3, and a d instead
of an 8. Just carry out the exact same steps as you do when addingg +g You
can think of each of the numbers in the above solution as stamped on one
side of a coin with the corresponding variable stamped on the other side. For
instance, there's a coin with a 2 on one side and an a on the opposite side;
another coin has an 8 on one side and a d on the other side, and so on. Now,
take each step of the previous solution, flip each coin over, and voila, you've
got the solution to the original problem. Here's the final answer:

ad+ch
bd

Subtracting fractions

Subtracting fractions works like adding fractions except that instead of
adding, you subtract. Insights like this are the reason they pay me the big
bucks.

Canceling in fractions

Finishing calculus problems — after you've done all the calculus steps—
sometimes requires some pretty messy algebra. including canceling. Make
sure you know how to cancel and when you can do it.

L |
In the fraction, 75, three xs can be canceled irorgl the numerator and
denominator, resulting in the simplified fraction, . If you write out the
xs instead of using exponents, you can more clearly see how this works:

x*y! x-x-x-x-Xxy¥y
rz X X X2

Now cancel three xs from the numerator and denominator:
£d fxxyy
FEEz

B r oy
That leavesyc-uwithx xzy }.or xzy.
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Express yourself £

An algebraic expression or just expression is something like xyz or a*p®,/ g8,
basically anything without an equal sign (if it has an equal sign, it's an equation).
Canceling works the same way with expressions as it does for single variables.
By the way. that’s a tip not just for canceling, but for all algebra topics.

Expressions always behave exactly like variables.
So, if each x in the above problem is replaced with an {jxyz— ), you've got

(oz-q)°y
(0z-g)’z

And three of the expression (xyz — g ) cancel from the numerator and denomi-
nator, just as the three xs canceled. The simplified result is

(xyz—q)*y*
oz Il

The multiplication rule

Now you know fiow to cancel. It's equally important to know when you can
cancel.

You can cancel in a fraction only when it has an unbroken chain of multiplica-
tion through the entire numerator and the entire denominator.

Canceling is allowed in a fraction like this:

a’b'(xy-pq)(c+d)
ab”z(xy—pq]s

Think of multiplication as something that conducts electricity. Electrical cur-
rent can flow from one end of the numerator to the other, from the a® to the
(¢ +d), because all the variables and expressions are connected through mul-
tiplication. (Note that an addition or subtraction sign inside parentheses —
the “+” in (¢ + d) for instance — does not break the current.) Because the
denominator also has an unbroken chain of multiplication, you can cancel:
one g, three bs, and three of the expression ( xy - pg). Here’s the result:

a(xy-pq)(c+d)
b=z

90
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But adding an innocuous-looking 1 to the numerator (or denominator) of the
original fraction changes everything:

a*b*(xy—pq)'(c+d)+1
ab'z(xy-pg)’

The addition sign in front of the 1 breaks the electrical current, and no canceling
is allowed anywhere in the fraction.

Absolute Value — Absolutely Easy

Absolute value just turns a negative number into a positive and does nothing
to a positive number or zero. For example,

|-6|=6, |3| =3. and [0] =0

It's a bit trickier when dealing with variables. If x is zero or positive, then the
absolute value bars do nothing, and thus,

x| =x
But if x is negative, the absolute value of x is positive, and you write
|x|=—x

For example, if x=-5,|-5|=-(-5)=5.

U is a positive.
Empowering Your Powers

You are powerless in calculus if you don't know the power rules:

<WMBER
é}b@ When x is a negative number, —x (read as “negative x,” or “the opposite of x")
|

|

P x’=1

This is the rule regardless of what x equals —a fraction, a negative,
anything — except for zero (zero raised to the zero power is undefined).
Let’s call it the kitchen sink rule:

Ckia

L RS T

(everything but the kitchen sink)’=1
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a1
-

For example, 4 *= = = ilﬁ' This is huge! Don't forget it! Note that this

answer of % is nof negative.

=9

| o 2% = (/3) =4/ and s = () "=/

You can use this handy rule backwards to convert a root problem into
an easier power problem.

o~ xf-xP=xandx®- x*=x"""

You add the powers here. (By the way, you can't do anything to x* plus x°.
You can’t add x* to x* because they're not like terms. You can only add
or subtract terms when the variable part of each term is the same, for
instance, 3xy°z + 4xy*z = Txy°z. In case you're curious, this works for
exactly the same reason —I'm not kidding — that 3 chairs plus 4 chairs
is 7 chairs; and you can't add unlike terms, just like you can’t add 5 chairs
plus 2 cars.)

£l & 2 o
X =x’and X =x*and X =x""*
] X X X

Here vou subfract the powers.

f v (*)=x"and (x*)"=x*

.' You multiply the powers here.

V¥ (yz)'=x’y’ z* and (xyz)°=x° y° z°

Here you distribute the power to each variable.

= £ i_x_'l E u_:r‘_.?
V(J’) ) a"d[J’) T 57
Ditto.

|1 (x4 3)P=x"+ y*NOT!

Do not distribute the power in this case. Instead, multiply it out the long
way: (x+ ) =+ V(x+y)=x"+xy+yx+ ¥ =x"+ 2xy + y°. Watch what
happens if you erroneously use the above “law” with numbers: (3 +5)*
equals 8% or 64, not 3*+ 5%, which equals 9 + 25, or 34.

" Rooting for Roots

Roots, especially square roots, come up all the time in calculus, So knowing
how they work and understanding the fundamental connection between roots
and powers is essential. And of course, that’s what I'm about to tell you.
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Roots rule — make that, root rules

Any root can be converted into a power, for example, Wx=x%, [x=x",
and ¥ x* = x”* . Thus, you don’t really need the following root rules —you can
just convert each root in a problem into a power and use the power rules
instead to solve the problem (this is a very useful technique, by the way). But
in case yvou're a glutton for punishment, here are more rules to review (learn
for the first time?). Actually, when you come right down to it, you probably

should know these rules.
14 ,/0=0and /1=1

But you knew that, right?

You can't have a negative number under a square root or any other even
number root—at least not in basic calculus.

e

(= i e e e R L
" Ja fb=Ja b Ya -yb=%ab,and Va ib=7ab

]

o
y

=]
T

! n
v a Y

' _fa@ ¥ a i
== === and ==+
L e b Wb Vb
: S R =
P ¥sfg=%n and Y¥a="Ya

You multiply the root indexes.
F v Ja’ =|a|, a’ =|al, ¥/a" =|al and so on.

If you have an even number root, you need the absolute value bars on the
answer, because whether a is positive or negative, the answer is positive.
If it's an odd number root, you don't need the absolute value bars. Thus,
| v 3/a*=a @* =a,and so on.
“ o Ja' s b =a+b.NOT!
Make this mistake and go directly to jail. Try solving it with numbers:
2%+ 3% = /13, which does not equal 2+ 3.

Simplifying roots

Here are two last things on roots. First, you need to know the two methods
for simplifying roots like ,/ 300 or ,/504.

The quick method works for ,/300 because it's easy to see a large perfect
square, 100, that goes into 300. Because 300 equals 100 times 3, the 100
comes out as its square root, 10, leaving the 3 inside the square root. The
answer is thus 10 /3.
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For /504, it's not as easy to find a large perfect square that goes into 504, so
you've got to use the longer method:

1. Break 504 down into a product of all of its factors.
/504=,2.2.2.3-3-7

2. Circle each pair of numbers.

3. For each circled pair, take one number out.
2.3 /977

The last thing about roots is that, by convention, you don’t leave a root in
the denominator of a fraction—it’s a silly, anachronistic convention, but it’s
still being taught, so here it is. If your answer is, say, % you multiply it by

“(-_
e

I

/3

[y
(3% ]
3]

c.al|"5
)|
w[

Logarithms — This Is Not an Event at
a Lumberjack Competition

A logarithm is just a different way of expressing an exponenua] relationship
between numbers. For instance,

=8, s0,
log:8=3 (read as “log base 2 of 8 equals 3™

These two equations say precisely the same thing. You can think of one of
them as the Greek way of writing this mathematical relationship and the other
as the Latin way of writing the very same thing. The base of a logarithm can
be any number greater than zero other than 1, and by convention, if the base
is 10, you don’t write it. For example, 1og1000 = 3 means log, 1000 = 3. Also,
log base e (e = 2.72) is written In instead of log. — mathematicians use this
so much that | suppose they wanted a special abbreviation for it.

59
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You should know the following logarithm properties:

§ - log1=0

E

¥ log.c=1

» log. (ab)=log.a+log: b
» log. [%) =log.a—log: b

1 log.a"= blog.a

log.b
Mlogab:é:?

i
i
g
:

With this property, you can compute something like logs 20 on your
calculator by entering ligg_g, using base 10 for c.
Q

v log.a’=b

¥ a™t=b

Factoring Schmactoring — When Am 1
Ever Going to Need It?

When are you ever going to need it? For calculus, that’s when.

Factoring means “unmultiplying,” like rewriting 12 as 2- 2 - 3. You won't run
across problems like that in calculus, however. For calculus, you need to be
able to factor algebraic expressions, like factoring 5xy + 10yz as 5y (x + 2z),
Algebraic factoring always involves rewriting a sum of terms as a product.
What follows is a quick refresher course.

Pulling out the GCF

The first step in factoring any type of expression is to pull out—in other
words, factor out — the greatest thing that all of the terms have in common —
that’s the greatest common factor or GCF. For example, each of the three terms
of 8'y'+ 12x¢°y*+ 20x*y’z contains the factor 4x"y*, so it can be pulled out
like this: 4.1?2}:3{ 2xy+ 3y +5x'z ] Make sure you always look for a GCF to pull
out before trying other factoring techniques.
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Looking for a pattern

After pulling out the GCF if there is one, the next thing to do is to look for one
of the following three patterns. The first pattern is fuge; the next two are
much less important.

Difference of squares
Knowing how to factor the difference of squares is critical:

a‘-b*={a-b){a+b)

If you can rewrite something like 9x' - 25 so that it looks like ( this) - (that)?.
then you can use the factoring pattern. Here's how:

Ox*—25= {3-1:31_ (5).’
- Now, because (this) - (that)*= (this - that) (this+ that), you can factor the
problem:
(3x%) - (5)*= (3x*-5)(3x*+5)

& b Adifference of squares, a* - b°, can be factored, but a sum of squares, a>+ b°,
cannot be factored. In other words, @+ b?, like the numbers 7 and 13, is

@ prime—you can't break it up.

Sum and difference of cubes

You might also want to memorize the factor rules for the surn and difference
of cubes:

a’+b’=(a+b)(a’-ab+b?)
a'-b’=(a- b](a2+ab+ bE:I

Trying some trinomial factoring

Remember regular old trinomial factoring from your algebra days?
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‘9‘9”!5& A trinomial is a polynomial with three terms. A polynomial is an expression like

/\ 4x% - 6x*+ x* — 5x + 2 where, except for the constant (the 2 in this example), all

L\ J the terms have a variable raised to a positive integral power. In other words, no
fraction powers or negative powers allowed. And no radicals, no logs, no sines
or cosines, or anything else — just terms with a coefficient, like the 4 in 4x®,
multiplied by a variable raised to a power. The degree of a polynomial is the

polynomial’s highest power of x. The above polynomial, for instance, has a
degree of 5.

It wouldn't be a bad idea to get back up to speed with problems like

6x*+13x—5=(2x+5)(3x-1)

A few standard, guess-and-check techniques for factoring a trinomial like this
are floating around the mathematical ether —you probably learned one of them
in your algebra class. If you remember it, great. But such factoring techniques
aren't critical because you can always factor (and solve) trinomials with the
quadratic formula, which is covered in the next section. For more on trinomial
factoring, see Algebra For Dummies by Mary Jane Sterling (published by Wiley).

Solving Quadratic Equations

A quadratic equation is any second degree polynomial equation— that's when
the highest power of x, or whatever other variable is used, is 2.

You can solve quadratic equations by one of three basic methods.

Method 1: Factoring
Solve 2x* - 5x=12
1. Bring all terms to one side of the equation, leaving a zero on the other
side.
2¢i-5x—12=0
2. Factor.
(2x+3)(x-4)=0

You can check that these factors are correct by multiplying them. Does
FOIL ring a bell?
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3. Set each factor equal to zero and solve (using the zero product

property).
2x+3=0 x-4=0
2x=-3
xz—%, or x=4

So, this equation has two solutions: x = —% and x=4.

Method 2: The quadratic formula

The solution or solutions of a quadratic equation, ax®+ bx+ c, are given by
the quadratic formula:

_=b+ /b*—dac
& 2a
Now solve the same equation from Method 1 with the quadratic formula:

1. Bring all terms to one side of the equation, leaving a zero on the other
side,

2x*-5x-12=0
2. Plug the coefficients into the formula.
In this example, a equals 2, b is -5, and c is 12, so

oo —C52CHAR)1Y)
2:2

5% /25-(-96)
=242 %)

1 5 =+ |‘.-'|l.1.2_1
R

This agrees with the solutions obtained previously — the solutions
better be the same because we're solving the same equation.
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Here's a nifty trick for using the quadratic formula for factoring trinomials.

Say you just want to factor the trinomial 2x¢*— 5x— 12 rather than solve the
related quadratic equation, 2x* - 5x — 12 = 0. Here's what you do.

1. Use the quadratic formula to get solutions for x. (You can also use your
calculator to get the solutions.) Make sure the solutions are written as
fractions rather than as decimals and that they’re reduced to lowest
terms.

The two solutions, again, are 4 and — %

2. Take the two solutions and put them in factors. If a solution is positive,
use subtraction. If a solution is negative, use addition.

So with the solution of 4, you get (x — 4); and with ——32-, vou get (x+ % }-

(I—4}(x+ %)

3. If either solution is a fraction, take the denominator and bring it in
front of the x.

(x-0)( 22

And, voila, the trinomial is factored: (x—4)(2x+3).

Method 3: Completing the square

The third method of solving quadratic equations is called completing the
square because it involves creating a perfect square trinomial that you can
then solve by taking its square root.

Solve 3x*= 24x + 27.

oo .

1. Put the x* and the x terms on one side and the constant on the other.
3x"— 240 =27
2. Divide both sides by the coefficient of x* (unless, of course, it's 1).
x*—8x=9
3. Take half of the coefficient of x, square it, then add that to both sides.
Half of —8is —4 and (—4)*is 16, so add 16 to both sides:

x'—8x+16=9+16
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4. Factor the left side. Notice that the factor always contains the same
number you found in Step 3 (—4 in this example).

{x—4)*=25

5. Take the square root of both sides, remembering to put a + sign on
the right side.

x-4=%5
6. Solve.
x=4+5
=9 or-1
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Chapter 5

Funky Functions and
Their Groovy Graphs

s

n This Chapter

p Figuring out functions and relations
# Learning about lines

& Getting particular about parabolas
» Grappling with graphs

# Transforming functions

» Investigating inverse functions

e 8 &

urtually everything you do in calculus concerns functions and their graphs
in one way or another. Differential calculus involves finding the slope or
steepness of various functions, and integral calculus involves computing the
area underneath functions. And not only is the concept of a function critical
for calculus, it's one of the most fundamental ideas in all of mathematics.

What Is a Function?

Basically, a function is a relationship between two things in which the numeri-
cal value of one thing in some way depends on the value of the other. Examples
are all around us: The average daily temperature for your city depends on, and
is a function of, the time of year; the distance an object has fallen is a function
of how much time has elapsed since you dropped it; the area of a circle is a
function of its radius; and the pressure of an enclosed gas is a function of its
temperature.
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22 The defining characteristic of a function
f % | A function has only one output for each input.

@/

Consider Figure 5-1.

Coke Machine Slot Machine
e ’
Figure 5-1: @@
The Coke @ 0ol
machine is a 0
function. HE
The slot ] T
machine is
not,
oETE—T A Function Mot a Function

The Coke machine is a function because after plugging in the inputs (your
choice and your money), you know exactly what the output is, With the slot
machine, on the other hand, the output is a mystery, so it's not a function,
Look at Figure 5-2.

The squaring function, £, is a function because it has exactly one output
assigned to each input. It doesn’t matter that both 2 and -2 produce the
same output of 4 because given an input, say -2, there’s no mystery about
the output. When you input 3 into g, however, you don't know whether the
output is 1 or 2. Because no output mysteries are allowed in functions, g is

@&‘\BE‘? not a function.
./@ Good functions, unlike good literature, have predictable endings.

f g
input output input output
{domain) {range) {domain] (range)
-2 1
T 3
. . u =0
Figure 5-2: 3 = WG
fisa 0 1 5 3
function. 1 4 ==ty
gis not. 2 /
[T
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Figure 5-3;
A function

machine:
Meat goes

comes out.
f o]

in, sausage _
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The set of all inputs of a function is called the domain; the set of all outputs is
called the range.

Some people like to think of a function as a machine. Consider again the
squaring function, f, from Figure 5-2. Figure 5-3 shows two of the inputs and
their respective outputs.

You pop a 1 into the function machine, and out pops a 1; you put in a -2 and
a 4 comes out. A function machine takes an input, operates on it in some way;,
then spits out the output.

Independent and dependent variables

In a function, the thing that depends on the other thing is called the depen-
dent variable; the other thing is the /ndependent variable. Because you plug
numbers into the independent variable, it's also called the input variable.
After plugging in a number, you then calculate the output or answer for the
dependent variable, so the dependent variable is also called the output vari-
able. When you graph a function, the independent variable goes on the x-axis,
and the dependent variable goes on the y-axis.

Sometimes the dependence between the two things is one of cause and
effect — for example, raising the temperature of a gas causes an increase in
the pressure. In this case, temperature is the independent variable and pres-
sure the dependent variable because the pressure depends on the temperature.

Often, however, the dependence is not one of cause and effect, but just some
sort of association between the two things. Usually, though, the independent
variable is the thing we already know or can easily ascertain, and the depen-
dent variable is the thing we want to figure out. For instance, you wouldn't
say that time causes an object to fall (gravity is the cause), but if you know
how much time has passed, you can figure out how far the object has fallen.
So, time is the independent variable, and distance the dependent variable;
and you would say that distance is a function of time.

49
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Whatever the type of correspondence between the two variables, the depen-
dent variable is the thing we care about — when and how fast it goes up and
when and how fast it goes down. Generally, we want to know what happens
to the dependent or y-variable as the independent or x-variable increases
(goes to the right).

Function notation

A common way of writing the function y=5x" - 2x*+ 3 is to replace the “y"
with “f (x)" and write f (x) = 5x* - 2x°+ 3. It's just a different notation for the
same thing. These two equations are, in every respect, mathematically identi-
cal. Students are often puzzled by furiction notation when they see it the first
time. They wonder what the “f” is and whether f (x) means f times x. It does
not. If function notation bugs you, my advice is to think of f (x) as simply the
way y is written in some foreign language. Don't consider the fand the x sepa-
rately; just think of £ { x) as a single symbol for y.

Think of f { x) (read as “fof x”) as short for “a function of x.” You can write
y=f(x)=3x", which is translated as "y is a function of x and that function

is 3x* However, sometimes other letters are used instead of f— such as

g(x) or p{x)— often just to differentiate between functions. The function
letter doesn’t necessarily stand for anything, but sometimes the initial letter
of a word is used (in which case you use an uppercase letter). For instance,
you know that the area of a square is determined by squaring the length of its
side: Area=side® or A =s”. The area of a square depends on, and is a function
of, the length of its side. With function notation, you can write A(s) =s".

Consider the squaring function y=x* or f (x)=x" When vou input 3 for x,
the output is 9. Function notation is convenient because you can concisely
express the input and the output by writing f (3) = 9 (read as “fof 3 equals 9").
Remember that f {3) =9 means that when x is 3. f {x ) is 9; or, equivalently, it
tells vou that when xis 3, yis 9.

Composite functions

A composite function is the combination of two functions. For example, the
cost of household electrical energy depends on how much you use, and
usage depends on the outdoor temperature. Because cost depends on usage
and usage depends on temperature, cost will depend on temperature. In func-
tion language, cost is a function of usage, usage is a function of temperature,




Chapter 5: Funky Functions and Their Groovy Graphs 5 1

and thus cost is of function of temperature. This last function, a combination
of the first two, is a composite function.

Let f(x)=x" and g(x)="5x-8. Input 3 into g(x): g(3)=5-3 - 8, which
equals 7. Now take that output, 7, and plug it into f (x): f(7) = 7°= 49. The
machine metaphor shows what I did here. Look at Figure 5-4. The g machine
turns the 3 into a 7, and then the f machine turns the 7 into a 49.

RSSO e
Figure 5-4: g f
Two
function —u Ex—BF & _-—al x:
machines. 2 / 4

You can express the net result of the two functions in one step with the fol-
lowing composite function:

f(g(3))=49

You calculate the inside function of a composite function first — g {3) = 7.
Then you take the output, 7, and calculate f (7), which equals 49.

To determine the general composite function, £ {_g {x)}, plug g (x), which
equals 5x - 8, into f (x ). In other words, you want to determine £ { 5x - 8).
The ffunction or fmachine takes an input and squares it. Thus,

f(5x - 8) = (5x - 8)°
=(5x-8)(5x-8)
= 25" — 40x — 40x + 64
= 25x* - 80 + 64

Thus, f{g (x)) = 25" - 80x + 64.

With composite functions, the order matters. As a general rule,

fg(x))=g(F(x)).
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What Does a Function Look Like?

T
Figure 5-5:
The
Cartesian
{for
Descartes)
ar x-y
coordinate
system.

I'm no math historian, but everyone seems to agree that René Descartes
(1596-1650) came up with the idea of the x-y coordinate system shown in
Figure 5-5.

¥
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Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716) are credited with
inventing calculus, but it’s hard to imagine that they could have done it with-
out Descartes’ contribution several decades earlier. Think of the coordinate
system (or the screen on your graphing calculator) as your window into the
world of calculus. Virtually everything in your calculus textbook and in this
book involves the graphs of lines or curves — usually functions — in the

Xy coordinate system.

Consider the four graphs in Figure 5-6.

These four curves are functions because they satisfy the vertical line test.
(Note: I'm using the term curve here to refer to any shape, whether it's curved
or straight.)

A curve is a function if a vertical line drawn through the curve — regardless
of where it's drawn — touches the curve only once. This guarantees that
each input has exactly one output.

No matter where you draw a vertical line on any of the four graphs in
Figure 5-6, the line touches the curve at only one point. Try it.

If, however, a vertical line can be drawn so that it touches a curve two or
more times, then the curve is not a function. The two curves in Figure 5-7,
for example, are not functions.
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y=3x+5 y=x*-2

=X -

y=|x y = sinx
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; Figure 5-6:
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- Figure 5-7: ¥ "
~ These two 4 b

curves

are not

~ functions

I

PR

r Y T
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So, the four curves in Figure 5-6 are functions, and the two in Figure 5-7
are not, but all six of the curves are relations.

A relation is any collection of points on the xy coordinate system.
You spend a little time studying some non-function relations in calculus —

circles, for instance — but the vast majority of calculus problems involve
functions.

Common Functions and Their Graphs

Figure 5-8;
The graph of
the line
y=3x+5
puisii i eeia

You're going to see hundreds of functions in your study of calculus, so it
wouldn’t be a bad idea to familiarize yourself with the basic ones in this sec-
tion: the line, the parabola, the absolute value function, the cubing and cube
root functions, and the exponential and logarithmic functions.

Lines in the plane in plain English

A line is the simplest function you can graph on the coordinate plane. (Lines
are important in calculus because when you zoom in far enough on a curve,
it looks and behaves like a line,) Figure 5-8 shows an example: y = 3x+5.
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Figure 5-9;
The line
y=3x+5
hasa
slope of 3.

Hitting the slopes

The most important thing about the line in Figure 5-8 — at least for your
study of calculus — is its slope or steepness. Notice that whenever x goes

1 to the right, y goes up by 3. A good way to visualize slope is to draw a stair-
way under the line (see Figure 5-9). The vertical part of the step is called the
rise, the horizontal part is called the run, and the slope is defined as the ratio
of the rise to the run:

rise 3
S!OPEHW—T—:’D
¥
A
21
18 3
15 3
1
12 3
1
9 3
1
gif 13
0
- X
-6 -3/ i 6
-3
r

You don't have to make the run equal to 1. The ratio of rise to run, and thus
the slope, always comes out the same, regardless of what size you make the
steps. If you make the run equal to 1, however, the slope is the same as the
rise because a number divided by 1 equals itself. This is a good way to think
about slope — the slope is the amount that a line goes up (or down) as it
goes | to the right.

Lines that go up to the right have a positive slope; lines that go down to the
right have a negative slope. Horizontal lines have a slope of zero, and vertical
lines do not have a slope — you say that the slope of a vertical line is undefined.
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Here's the formula for slope:

Pick any two points on the line in Figure 5-9, say (1, 8) and (3, 14), and plug
them into the formula to calculate the slope:

_14-8
Slope = 3-1
16
2
=3

This computation involves, in a sense, a stairway step that goes over 2 and
up 6. The answer of 3 agrees with the slope you can see in Figure 5-9.

Any line parallel to this one has the same slope, and any line perpendicular
to this one has a slope of — %, which is the opposite reciprocal of 3.

Parallel lines have the same slope. Perpendicular lines have opposite reciprocal
slopes.

Graphing lines

If you have the equation of the line, y = 3x + 5, but not its graph, you can
graph the line the old-fashioned way or with your graphing calculator. The
old-fashioned way is to create a table of values by plugging numbers into x
and calculating y. If you plug 0 into x, y equals 5; plug 1 into x, and y equals 8;
plug 2 into x, and y is 11, and so on. Table 5-1 shows the results.

Table 5-1 Points on the Line y=3x+5
xjol1|2]3|a]|-{--—>
v 15[8[1]1a]17] -4---->

Plot the points, connect the dots, and put arrows on both ends — there’s
your line.

This is a snap with a graphing calculator. Just enter y = 3x+ 5 and your calcu-
lator graphs the line and produces a table like Table 5-1.
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Slope-intercept and point-slope forms

You can see that the line in Figure 59 crosses the y-axis at 5 — this point is
the y-intercept of the line. Because both the slope of 3 and the j-intercept of 5
appear in the equation y = 3x+ 5, this equation is said to be in slope-intercept
form. Here’s the form written in the general way:

y=mx+h
(Where m is the slope and b is the j-intercept.)

(If that doesn’t ring a bell — even a distant, faint bell — go directly to the reg-
istrar and drop calculus, but do not under any circumstances return this book.)

All lines, except for vertical lines, can be written in this form. Vertical lines
always look like x = 6, The number tells you where the vertical line crosses
the x-axis.

The equation of a horizontal line also looks different, ¥ =10 for example, But
it technically fits the form y = mx+ b — it's just that because the slope of a
horizontal line is zero, and because zero times x is zero, there is no x-term
in the equation.

A line is the simplest type of function, and a horizontal line (called a constant
function) is the simplest type of line. It's nonetheless fairly important in cal-
culus, so make sure you know that a horizontal line has an equation like

¥ =10 and that its slope is zero.

Itm =1 and b = 0, you get the function y = x. This line goes through the origin
(0, 0) and makes a 45° angle with both coordinate axes. It's called the identity
function because its outputs are the same as its inputs.

In addition to the slope-intercept form for the equation of a line, you should
also know the paoint-siope form:

¥=r= m{x—x:)

To use this form, you need to know — you guessed it — a point on a line and
the line's slope. You can use any point on the line. Consider the line in Figure
5-0 again. Pick any point, say (2, 11), and then plug the x- and y-coordinates of
the point into x; and y;, and plug the slope, 3, into m.

y-11=3(x-2)

With a little algebra, you can convert this equation into the one we already
know, y=3x+5. Try it.

.
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Figure 5-10:
The graphs

of f(x) =x

and

gl(x)=|x|
s

Parabolic and absolute value functions —
even steven

You should be familiar with the two functions shown in Figure 5-10: the
parabola, f { x) = x* and the absolute value function, g(x) =|x|

fix) = x2 glx)=x|
y ¥

A

k A

Sl o x

Notice that both functions are symmetric with respect to the y-axis. In other
words, the left and right sides of each graph are mirror images of each other.
This makes them even functions. A polynomial function like y=9x'— 4x*+3,

where all powers of x are even (with or without a constant term), is one type
of even function. Another even function is y = cos(x) (see Chapter 6).

A couple oddball functions

Graph f(x)=x"and g(x)= 3/ on your graphing calculator. These two func-
tions illustrate odd symmetry. Odd functions are symmetric with respect to
the origin which means that if you were to rotate them 180" about the origin,
they would land on themselves. A polynomial function like y = 4x* - x* + 2x,
where all powers of x are odd, is one type of odd function. Another odd func-
tion is y = sin(x) (see Chapter 6).

Many functions are neither even nor odd, for example y = 3x*— 5x. My high
school English teacher said a paragraph should never have just one sentence,
so voila, now it's gdot two.




Chapter 5: Funky Functions and Their Groovy Graphs 5 9

Figure 5-11:
The graphs
of fix}=2"
and

gld =107
L]

Exponential functions

An exponential function is one with a power that contains a variable, such as
f(x)=2" or g(x)=10" Figure 5-11 shows the graphs of both these functions
on the same x-y coordinate system.
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Both functions go through the point (0, 1), as do all exponential functions of
the form £ (x) = 5". When b is greater than 1, you have exponential growth. All
such functions go up to the right forever, and as they go left toward negative
infinity, they crawl along the x-axis, always getting closer, but never touching
the axis. You use these and related functions for figuring things like invest-
ments, inflation, and growing population.

When b is less than 1, you have an exponential decay function. The graphs of
such functions are like exponential growth functions in reverse. Exponential
decay functions also cross the y-axis at (0, 1), but they go up to the left for-
ever, and crawl along the x-axis to the right. These functions model things
that shrink over time, such as the radioactive decay of uranium.

Logarithmic functions

A logarithmic function is simply an exponential function with the x and ) axes
switched. In other words, the up-and-down direction on an exponential graph
corresponds to the right-and-left direction on a logarithmic graph, and the
right-and-left direction on an exponential graph corresponds to the up-and-
down direction on a logarithmic graph. (If you want a refresher on logs,

see Chapter 4.) You can see this relationship in Figure 5-12, in which both
f(x)=2" and g (x) = log: x are graphed on the same set of axes.
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Both exponential and logarithmic functions are monotonic. A monotonic
function either goes up over its entire domain (called an increasing function)
or goes down over its whole domain (a decreasing function).

Notice the symmetry of the two functions in Figure 5-12 about the line y = x.
This makes them inverses of each other, which brings us to the next topic.

Inverse Functions

The functions £ (x) = x* (for x = 0) and the function f '(x) = /x (read as “f
inverse of x") are inverse functions because each undoes what the other
does. In other words, f (x) = x* takes an input of 3 and produces an output of
9 (because 3°=9); £ '(x) = /x takes the 9 and turns it back into the 3 (because
/9= 3). Notice that £(3)=9 and £ '(9) = 3. You can write all of this in one
step as f~'(£(3)) = 3. It works the same way If you start with £~ (x).

£7'(16) = 4 (because /16 = 4), and £ (4) = 16 (because 4°= 16). If you write

this in one step, you get £ (£7'(16)) = 16. (Note that while only ' (x) is

read as finverse of x, both functions are inverses of each other.)

The fancy way of summing up all of this is to say that £ (x) and f~'(x) are

inverse functions if and only if £~' (£ (x)) =x and F(f '(x))=x.
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Figure 5-13;
The graphs of
f(x)=x

{x = 0) and
' (x)=/x.
S e Ty

Don't confuse the superseript ~1in /™' (x) with the exponent ~1. The exponent
—l gives you the reciprocal of something, for example x = l. But f~'(x) is the
inverse of f (x). It does not equal el which is the reciprocal of f ( x). Of
course, you may ask, so why is the exact same symbol used for two different

things? Beats me.

When you graph inverse functions, each is the mirror image of the other,
reflected over the line y = x, Look at Figure 5-13, which graphs the inverse
functions £ (x)=x" (for x = 0) and ' (x) = /x.

g. flx)=x2
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0 406 g 7 8 18

If you rotate the graph in Figure 5-13 counterclockwise so that the line y=x

Is vertical, you can easily see that /' (x ) and f ™' (x) are mirror images of each
other. One consequence of this symmetry is that if a point like (2, 4) is on one
of the functions, the point (4, 2) will be on the other. Also, the domain of fis
the range of ', and the range of fis the domain of f ",

Shifts, Reflections, Stretches,
and Shrinks '

Any function can be transformed into a related function by shifting it horizon-
tally or vertically, flipping it over (reflecting it) horizontally or vertically, or
stretching or shrinking it horizontally or vertically. I do the horizontal trans-
formations first. Consider the exponential function y=2*, See Figure 5-14.
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Figure 5-14:
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Horizontal transformations

Horizontal changes are made by adding a number to or sublracting a number
from the inpul variable x or by multiplying x by some number. All horizontal
transformations, except reflection, work the opposite way you'd expect:
Adding to x makes the function go left, subtracting from x makes the function
go right, multiplying x by a number greater than 1 shrinks the function, and
multiplying x by a number less than 1 expands the function. For example,

the graph of y=2*"'* has the same shape and orientation as the graph in
Figure 5-14; it's just shifted three units to the left. Instead of passing through
(0, 1) and (1, 2), the shifted function goes through (-3, 1) and (-2, 2). And the
graph of y=2°""is three units to the right of y = 2*, The original function and
both transformations are shown in Figure 5-15.

If you multiply the x in y = 2* by 2, the function shrinks horizontally by a factor
of 2. So every point on the new function is half of its original distance from the
y-axis. The y-coordinate of every point stays the same; the x-coordinate is cut
in half. For example, y = 2" goes through (1, 2), so y = 2* goes through (%4, 2);
y = 2" goes through (-4, ¥:), so0 y = 2 goes through (-2, ). Multiplying x by

a number less than 1 has the opposite effect. When y = 2* is transtormed into
y= DERY, every point on y = 2"is pulled away from the y-axis to a distance 4
times what it was. To visualize the graph of y = 2+*, imagine you've got the
graph of ¥ = 2" on an elastic coordinate system. Grab the coordinate system
on the left and right and stretch it by a factor of 4, pulling everything away
from the y-axis, but keeping the y-axis in the center. Now you've got the graph
of y= 27",
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Figure 5-15:
The graphs
of y=2, ——
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The last horizonlal transformation is a reflection over the y-axis. Multiplying
the x in y = 2* by ~1reflects it over or flips it over the y-axis. For instance, the
point (1, 2) becomes (-1, 2) and (-2, ¥) becomes (2, ¥). See Figure 5-16.
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Figure 5-16:
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y=2""
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Vertical transformations

To transform a function vertically, you add a number to or subtract a number
from the entire function or multiply it by a number. To do something to an
entire function, say y = 10%, imagine that the entire right side of the equation
is inside parentheses, like y = (10"). Now, all vertical transformations are
made by placing a number somewhere on the right side of the equation out-
side the parentheses, (Obviously, you don't actually need the parentheses.)
Unlike horizontal transformations, vertical transformations work the way

you expect: Adding makes the function go up, subtracting makes it go down,
multiplying by a number greater than 1 stretches the function, and multiplying
by a number less than 1 shrinks the function. For example,

y= 10"+ 6 shifts the original function up 6 units
y = 10" = 2 shifts the original function down 2 units

y=5-10" stretches the original function vertically by a factor of 5

y == - 10" shrinks the original function vertically by a factor of 3

|

Multiplying the function by -1 reflects it over the x-axis, or, in other words,
flips it upside down.
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The Trig Tango

In This Chapter
Socking it to 'em with SohCahToa
Everybody's gol an angle: 30°, 415°, 60"
Circumnavigating the unit circle
Graphing trig functions
Investigating inverse trig functions

Many calculus problems involve trigonometry, and the calculus itself is
enough of a challenge without having to relearn trig at the same time.
So, if your trig is rusty —I'm shocked — review these trig basics, or else!

Studying Trig at Camp SohCahToa

The study of trig begins with the right triangle. The three main trig functions
(sine, cosine, and tangent) and their reciprocals (cosecant, secant, and cotan-
gent) all tell you something about the lengths of the sides of a right triangle
that contains a given acute angle — like angle x in Figure 6-1. The longest side
of this right triangle (or any right triangle), the diagonal side, is called the
hypotenuse. The side that’s 3 units long is referred to as the opposite side
because it's on the opposite side of the triangle [rom angle x, and the side

of length 4 is called the adjacent side because it's adjacent to, or touching,
angle x,

et ey s
Figure 6-1:
Sitting
around the
campfire,
studying a
right
triangle.

i i e

Hypotenuse (H) 3

Dpposite (0}

Adjacent (A)
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SohCahToa is a meaningless mnemonic that helps you remember the defini-
tions of the sine, cosine, and tangent functions. SohCafifoa uses the initial let-
ters of sine, cosine, and tangent, and the initial letters of hypotenuse, opposite,
and adjacent to help you remember the following definitions. (To remember
how to spell SohCahToa, note its pronunciation and the fact that it contains
three groups of three letters each.) For any angle, 6,

Soh Cah Toa
-0 Ces e Al _ 0
sin@ = H cosf = H tan@ = A
For the triangle in Figure 6-1,
i 0_3 _A_4 S
SInX = ﬁ = E > COSX H™ 5 tanx = A A

The other three trig functions are reciprocals of these: Cosecant (csc) is the
reciprocal of sine, secant (sec) is the reciprocal of cosine, and cotangent
(cot) Is the reciprocal of tangent.

2 R b o |
CsCO=3in6 - 0 0
H
o ey vl sk
sect = cos® " A A
H
S LS R B X
COLtO= A== 0
A
So for the triangle in Figure 6-1,
s el RPEIED S Ad
CS5CXx = 4] = 3 secxy = A =7 cotx 0 = 3

Two Special Right Triangles

Because so many garden variety calculus problems involve 30°, 45°, and 60°
angles, it's a good idea to memorize the two right triangles in Figure 6-2.

The 45°-45°-90° triangle

Every 45°-45°-90° is the shape of a square cut in half along its diagonal. The
45°-45°-90° triangle in Figure 6-2 is half of a 1-by-1 square. The Pythagorean
theorem gives you the length of its hypotenuse, /2, or about 1.41,
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Figure 6-2:
The
45°-45°-90°
triangle

and the
30°-60°-90°
triangle.
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The Pythagorean theorem tells you that for any right triangle, a*+ b*= ¢?,
where @ and b are the lengths of the triangle’s legs (the sides touching the
right angle) and ¢ is the length of its iiypolenuse,

//
2
1 1
30° : N
V3=173

When you apply the SohCahToa trig functions and their reciprocals to the
45°-45°-90° triangle, you get the following trig values.

5 v
" o () O | O oo Hoo 20 7
sin45 H=73°72 = 0.71 cscds’ =5 = =/2 = 141
Fi Fs
cosd'ﬁz—ﬁ-—%—- 3f22-2l17] 5&:14?“—E "#12=|/§¢-:l.41
T O otd5 = A-1_
tan4h®: A_]_l cot45 _(_)_l_l

The 30°-60°-90° triangle
Every 30°-60°-90° triangle is half of an equilateral triangle.

The 30°-60°-90° in Figure 6-2 is half of a 2-by-2-by-2 equilateral triangle. It has
legs of lengths 1 and /3 (about 1.73), and a 2-unit long hypotenuse,

Don’t make the common error of switching the 2 with the ,/ 3in a 30°-60°-90°
triangle. Remember that 2 is more than /3 (/4 equals 2, so /3 must be less
than 2) and that the hypotenuse is always the longest side of a right triangle.

When you sketch a 30°-60°-90° triangle, exaggerate the fact that it's wider
than it is tall. This makes it obvious that the shortest side (length of 1) is
oppaosite the smallest angle (307,
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FHere are the trig values for the 30°-60°-90" triangle.

5in30° = Ql % csc30’=%:%:2
'

NS S o2 /B
cos 30 _F_T'”‘U'B? sec3(’ = ‘/ ———3 = 1,15
tan30°= 2 = L = “’ = 0.58 Ll ST /8L v

N T cot30 --5=T:ﬁg1.?3

The 30°-60°-90° triangle kills two birds with one stone because it also gives
you the trig values for a 60° angle. Look at Figure 6-2 again. For the 60" angle,
the /3 side of the triangle is now the opposite side for purposes of SohCahToa
because it's on the opposite side of the triangle from the 60° angle. The 1-unit
side becomes the adjacent side for the 60° angle, and the 2-unit side is still, of
course, the hypotenuse. Now use SohCahToa again to find the trig values for
the 60° angle:

2,/3
T o, csc60r=H =2 -243 o 15
sin60 Aape = 0.87 Q" /3 3
cosBl)’ = ﬁ—l sechl’ = %:%=2
f_
5000 oo e I e
tan60® = A T —,/3 = 1.73 LOLGU_G_ﬁ_ 5 = (.58

The mnemonic SohCahToa, along with the two oh-so-easy-to-remember rlght
triangles in Figure 6-2, give you the answers to 18 trig problems!

Circling the Enemy with the Unit Circle

SohCahToa only works with right triangles, and so it can only hanale acute
angles — angles less than 90°. (The angles in a triangle must add up to 180%
because a right triangle has a 90° angle, the other two angles must each be
less than 90°.) With the unit circle, however, you can find trig values for any
gize angle. The unit circle has a radius of one unit and is set in an x-y coordi-
nate system with its center at the origin. See Figure 6-3.
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R
Figure 6-3:
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circle.
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Figure 6-3 has quite a lot of information, but don’t panic; it will all make perfect
sense in a minute,

Angles in the unit circle

To measure an angle in the unit circle, start at the positive x-axis and go
counterclockwise to the ferminal side of tlie angle,

For example, the 150° angle in Figure 6-3 begins at the positive x-axis and ends

20

at the segment that hits the unit circle at St -l—]. If you go clockwise
instead, you get an angle with a negative measure,

Measuring angles with radians

You know all about degrees. You know what 45° and 80° angles look like; you
know that about face means a turn of 180" and that turning all the way around
till you're back to where you started is a 360° turn.
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But degrees aren’t the only way to measure angles. You can also use radians.
Degrees and radians are just two different ways to measure angles, like
inches and centimeters are two ways of measuring length.

The radian measure of an angle is the length of the arc alung_lhe circumfer-
ence of the unit circle cut off by the angle.

Look at the 30° angle in quadrant I of Figure 6-3. Do you see the bolded sec-
tion of the circle’s circumlference that is cut off by that angle? Because a
whole circle is 3607, that 30° angle is one-twelith of the circle. So the length
of the bold arc is one-twelfth of the circle's circumference. Circumference is
given by the formula C = 27r. This circle has a radius of 1, so its circumfer-
ence equals 277, Because the bold arc is one-twelfth of that, its length is %—,
which is the radian measure of the 3()° angle.

The unit circle's circumference of 27 makes it easy to remember that 360°
equals 27 radians. Half the circumference has a length of 7, so 180" equals
7 radians.

If you focus on the fact that 180° equals 7 radians, other angles are easy:

8 90° is half of 1807, so 90° equals half of 7, or % radians.

2
| »= 60° is a third of 180°, s0 60” equals a third of 7, or % raclians.

:I 1~ 45° is a fourth of 1807, so 45° equals a fourth of 77, Dr%radians.

|
| 1= 30° Is a sixth of 1807, so 30° equals a sixth of 7, or ‘:I—] radians.
Here are the formulas for converting from degrees to radians and vice versa.

Il +* To convert from degrees to radians, multiply the angle's measure
by T%r'ﬁ X3

" »* To convert from radians to degrees, multiply the angle’s measure
h 180"
H b}l’ L

By the way, the word radian comes from radius. Look at Iigure 6-3 again. An
angle measuring 1 radian (about 57) cuts off an arc along the circumference
of this circle of the same length as the circle's radius. This is true not only of
unit circles, but of circles of any size. In other words, take the radius of any
circle, lay it along the circle's circumference, and that arc creates an angle of
1 radian.

I dlia Av ang abhav aalaulie kaale, anma peahlame nea dogreooe and nthare

use radians, but radians are the preferred unit. If a problem doesn't specify
the unit, do the problem in radians.
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Honey, 1 shrunk the hypotenuse

Look at the unit circle in Figure 6-3 again. See the 30°-60°-90° triangle in quad-
rant [? It's the same shape but half the size of the one in Figure 6-2. Each of its
sides s half as long. Because its hypotenuse now has a length of 1, and
because when H is 1, %equals 0O, the sine of the 30° angle, which equals %
ends up equaling the length of the opposite side. The opposite side is é , 80
that’s the sine of 30°. Note that the length of the opposite side is the same as
the y-coordinate of the point 23 > . If you figure the cosine of 30° in this tri-
angle, it ends up equaling the length of the adjacent side, which is the same
as the x-coordinate of L‘éﬁ zj Notice that these values for 5in30° and cos30°
are the same as the ones given by the 30°-60°-90° triangle in Figure 6-2. This
shows you, by the way, that shrinking a right triangle down (or blowing it up)

has no effect on the trigonometric values for the angles in the triangle,

Now look at the 30°-60°-90° triangle in quadrant Il in Figure 6-3. Because it's
the same size as the 30°-60°-90° triangle in quadrant I, which hits the circle
at 73 —%— , the triangle in quadrant Il hits the circle at a point that’s straight

; 'y But remember that angles on the unit circle are all mea-
sured from the positive x-axis, so the hypotenuse of this triangle indicates a
150” angle; and that's the angle, not 30°, associated with the point —@% .

across from and symmetric to ‘33,:'13 The coordinates of the point in quad-
rant Il are |~ )}

The cosine of 150° is given by the x-coordinate of this point, —T', and the

sine of 150" equals the y-coordinate, g

The terminal side of an angle in the unit circle hits the circle at a point whose
x-coordinate is the angle’s cosine and whose y-coordinate is the angle's sine.
Here's a mnemonic: x and y are in alphabetical order as are cosine and sine.

Putting it all together

Look at Figure 6-4. Now that you know all about the 45°-45°-90° triangle, you
can easily work out — or take my word for it — that a 45°-45°-90° triangle in

/1
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quadrant [ hits the unit circle at L%_% And if you flip the 30°-60°-80° triangle
in quadrant | on its side, you get a 60° angle that hits the circle at [-%, -"%?1 !

This point has the same coordinates as those for the 30° angle bul reversed.
v
A

14—

—_—

\rj)

Figure 6-2;
Quadrant |
of the unit
circle with
three angles
and thair
coordinates.

=

—x—
0
y

care about at the origin — that’s (0, 0) — and then put the right angle on the
x-axis—never on the y-axis.

GMBER
cg"( ﬁ) Whenever you draw a right triangle in the unit circle, put the acute angle you

N To keep from mixing up the numbers % and g when dealing with a 30° or a

60° angle, note that ‘,5 equals 0.5 and that {; equals about 0.87. So, because a
30° angle hits the circle further out to the right than up, the x-coordinate
must be greater than the y-coordinate. Thus, the point must be j@_% |

not the other way around. It's vice versa for a 60" angle,

Now for the whole enchilada. Because of the symmetry in the four quadrants,
the three points in quadrant [ in Figure 6-4 have counterparts in the other
three quadrants, giving you 12 known points. Add to these the four points on
the axes, (1,0),(0,1),(=1,0), and (0, ~1), and you have 16 total points, each
with an associated angle, as shown in Figure 6-5,
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T V]
Figure 6-5:
The unit
circle with
16 angles
and their
coordinates.
o e ]

<\

These 16 pairs of coordinates automatically give you the cosine and sine of
the 16 angles. And because tan = 'géllsﬁ' you can obtain the tangent of these
16 angles by dividing an angle’s y-coordinate by its x-coordinate. (Note that
tand also equals the slope of the terminal side of the angle.) Finally, you can
find the cosecant, secant, and cotangent of the 16 angles because these trig
functions are just the reciprocals of sine, cosine, and tangent. You've now got,
at your fingertips — okay, maybe that's a bit of a stretch —the answers to 96
trig questions.

Knowing the trig values from the unit circle is quite useful in calculus. So quiz
yourself. Start by memorizing the 45°-45%-90° and the 30°-60°-90° triangles.
Then picture how these triangles fit into the four quadrants of the unit circle.
Use the symmetry of the quadrants as an aid. With some practice, you can
come up with the values for the six trig functions of all 16 angles in your
head. Try to do this with radians as well as with degrees. That would bring
your total to 192 trig facts! Quick —what's the secant of 210°, and what’s the

v f
cosine of %’5? Here are the answers (no peeking): —% and ﬂ%.
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Graphing Sine, Cosine, and Tangent

Figure 6-6 shows the graphs of sine, cosine, and tangent, which you can, of
course, produce on a graphing calculator.

:9‘9}35{1 Sine, cosine, and tangent — and their reciprocals, cosecant, secant, and

_? cotangent — are periodic functions, which means that their graphs contain a
] basic shape that repeats over and over indelinitely to the lelt and the right.
§ The period of such a function is the length of one of its cycles.
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If you know the unit circle, you can easily reproduce these three graphs by
hand. First, note that the sine and cosine graphs are the same shape — cosine
is the same as sine, just slid 90° to the left. Also, notice that their simple wave
shape goes as high as 1 and as low as —1 and goes on-forever to the left and
right, repeating every 360°, That's the period of both funclions, 360°. (It's no
coincidence, by the way, that 360° is also once around the unit circle.) The
unit circle tells you that sin0”" = 0, sin90°= 1, sin180° = 0, 5in270° = -1, and that
sin360° = 0, If you start with these five points, you can sketch one cycle. The
cycle then repeats to the left and right. You can use the unit cirele in the
same manner to sketch the cosine function.
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Notice in Figure 6-6 that the period of the tangent function is 180°. If you
remember that and the basic pattern of repeating backward S:shapes, sketch-
ing it isn't difficull. Because tan@ = il you can use the unit circle to determine
that tan{—d.‘]") =~1, tan("= 0, and tan45° = 1. That gives you the points
[:~45°r—l). (0, 0), and (457, 1). Since tan(—ﬂ{]")and tan90"are both undefined
(% at these points gives you a zero in the denominator), you draw vertical
asyrmptotes at =90° and 90°,

An asymptote is an imaginary line that a curve gets closer and closer to but
never touches.

The two asymptotes at -90° and 90° and the three points at (-45°,~1), (0, 0),
and (45% 1) show you where to sketch one backward S. The S-shapes then
repeat every 180° to the left and the right,

Inverse Trig Functions

An inverse trig function, like any inverse function, reverses what the original
function does. For example, sin30° = 71 50 the inverse sine function — written
as sin ' —reverses the input and output. Thus, sin” '-é- = 30°, It works the
same for the other trig functions.

The negative 1 superscript in the sine inverse function is not a negative 1
power, despite the fact that it looks just like it. Raising something to the nega-
tive 1 power gives you its reciprocal, so you might think that sin™' x is the
recipriocalof sinx, but the reciprocal of sine is cosecant, nof sine inverse.
You'd think they could have come up with a less confusing way to indicate

a function’s inverse. Go figure.

The only trick with inverse trig functions is memorizing their ranges — that's
the interval of their outputs. Because both sin30’ = 1 and sin150° = %, you
wouldn't know whether sin ' 1 equals 30° or 150" unless you know how the
interval of outputs is defined. And remember, in order for something to be a
function, there can’t be any mystery about the output for a given input. If you
reflect the sine function over the line y = x to create its inverse, you get a ver-
tical wave that isn't a function because it doesn't pass the vertical line test.
(See the definition of the vertical line test in Chapter 5.) To make sine inverse
a function, you have to take a small piece of the vertical wave that does pass
the vertical line test. Here are the ranges:
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The range of sin ' x is [—%-‘E-I or [-90°,90°]
The range of cos ' xis[0,7|or [07,180°]
The range of tan ' x is[—%1g~ or [-907,90°]
The range of cot ' x is |0, 7] or [0°, 180°]

Note the pattern: the range of sin”' x is the same as tan ' x, and the range of
cos ' x is the same as cot™' x. ~

Believe it or not, calculus authors don’t agree on the ranges for the secant
inverse and cosecant inverse functions. You'd think they could agree on this
like they do with just about everything else in mathematics. Humph. Use the
ranges given in your particular textbook. If you don’t have a textbook, use the
sin”' x range for its cousin csc¢ ' x, and use the cos™' x range for sec ' x. (By
the way, I don’t refer to esc™' x as the reciprocal of sin ' x because It's not its
reciprocal — even though csc x is the reciprocal of sin x, Ditto for cos™' x and
sec”' x.)

Identifying with Trig ldentities

Remember trig identities like sin® x + cos® x = 1 and sin 2x = 2sin x cos x?
Tell the truth now — most people remember trig identities about as well as
they remember nineteenth century vice-presidents. They come in handy in
calculus though, so a list of other useful ones is on the Cheat Sheet,
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In this part . . .

Fm mathematics of limits underlies all of calculus.
Limits allow us, in a sense, to zoom in on the graph of
a curve — further and further and further ad infinitum —
until it becomes straight. Once it's straight, regular-old
algebra and geometry can be used. This is the magic of
calculus.




Chapter 7
Limits and Continuity

In This Chapter

I» Taking a look at limits

J= Evaluating functions with holes — break out the mothballs

I+ Exploring continuity and discontinuity (dissing continuity is strictly prohibited)
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Limits are fundamental for both differentiai and integral calculus. The
formal definition of a derivative involves a limit as does the definition of
a definite integral. (If you're a real go-getter and can’t wait to read the actual
definitions, check out Chapters 9 and 13.) Now, it turns out that after you
learn the shortcuts for calculating derivatives and integrals, you won’t need
to use the longer limit methods anymore. But understanding the mathematics
of limits is nonetheless important because it forms the foundation upon
which the vast architecture of calculus is built (Okay, so [ got a bit carried
away). In this chapter, [ lay the groundwork for differentiation and integration
by exploring limits and the closely related topic, continuity.

Take It to the Limit — NOT

Limits can be tricky. Don't worry if you don't grasp the concept right away.

The limit of a function (if it exists) for some x-value, a, is the height the func-
tion gets closer and closer to as x gets closer and closer to a from the left and
the right,

Got it? You're kidding! Let me say it another way. A function has a limit for
a given x-value if the function zeros in on some point as x gets closer and
closer to the given value from the left and the right. Did that help? I didn’t
think so. It's much easier to understand limits through examples than
through this sort of mumbo jumbo, so take a look at some.
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Using three functions to illustrate
the same limit

Consider the function f (x) = 3x+ lin Figure 7-1. When we say that the limit
of f (x)as x approaches 2 is 7, written as l:mf (i) =7, we mean that as x gets
closer and closer to 2 from the left or the I'Ij,ht f (x) gets closer and closer
to a height of 7. By the way, as far as [ know, the number 2 in this example
doesn’t have a formal name, but 1 call it the x-number. With the x in its name,
you won't confuse it with the answer to the limit problem or simply the limit,
both of which refer to a y-value or height of the function (7 in this example).
Now, look at Table 7-1.

¥
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Figure 7-1: -
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Table 7-1 Input and Output Values of f (x)=3x+1
as x Approaches 2
x approaches 2 x approaches 2
from the left from the right
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[x [ 1 {1519 199)1999] J2001)201|21] 25] 3 |
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T
Figure 7-2:
The graph

of g{x),
which is
fix} with

the point at
{2, 7) moved
to (2, 5).

From Table 7-1, you can see that y is getting very close to 7 from both the left
and the right. If you're wondering what all the fuss is about — why not just
plug the number 2 into x and obtain the answer of 7 — I'm sure you've got a
lot of company. In fact, if all functions were continuous (without gaps) like the
one in Figure 7-1, you could just plug in the x-number to get the answer, and
there'd be no need for this type of limit problem. We need limits in calculus
because of the important functions that have holes,

The function in Figure 7-2 is identical to the function in Figure 7-1 except for
the hole at (2, 7) and the point at (2, 5).

Actually, this function, g (x), would never come up in an ordinary calculus
problem — I only use it to illustrate how limits work. (Keep reading. I have
a bit more groundwork to lay before you see why I include it.)

The important functions are the functions like the one in Figure 7-3, which

come up frequently in the study of derivatives. This third function, h ( x), is
identical to / (x) except that the point (2, 7) has been plucked out, leaving

a hole at (2, 7) and no other point where x equals 2.

Imagine what the table of input and output values would look like for g(x)
and hi(x). Can you see that the values would be identical to the values in
Table 7-1 for f (x)? For both g (x) and h{x), as x gets closer and closer to 2
from the left and the right, y gets closer and closer to a height of 7. For all
three functions, the limit as x approaches 2 is 7. This brings us to a critical
point: When determining the limit of a function as x approaches, say, 2, the
value of f (2) — or even whether f (2) exists at all — is totally irrelevant.
Take a look at all three functions again in Figure 7-4.
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Figure 7-3:
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Consider the three functions where x = 2: f (2) equals 7, g(2)is 5, and h (2)
doesn't exist (or, as mathematicians say, it's undefined). But when you're fig-
uring the limit of these functions as x gets closer and closer to 2, what actu-
ally happens at x = 2 is irrelevant. “What if at x = 2 the function does such
and such?” you might ask. It doesn't matter — there are no ifs, ands, or buts.

tONcg,  In alimit problem, x gets closer and closer to the x-number, but it never gets
& there, and what happens to the function when x equals the x-number has no

11‘}44'- %ﬂ
o

o effect on the answer to the limit problem (though for continuous functions
Z’! like f (x) the function value equals the limit and it can thus be used to com-
pute the limit).
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Sidling up to one-sided limits

One-sided limits work like regular, two-sided limits except that x approaches
the x-number from just the left or just the right. The most important purpose
for such limits is that they're used in the formal definition of a regular limit
(see the next section on the formal definition of a limit).

To indicate a one-sided limit, you put a little superscript subtraction sign on
the x-number when x approaches the x-number from the left or a superscript
addition sign when x approaches the x-number from the right. Like this:

limf(x) or limg(x)
b =0

Look at Figure 7-5. The answer to the regular limit problem, liu'ép {x), is that

X
the limit does not exist because as x approaches 3 from the left and the right,
p(x)is not zeroing in on a single point.

However, both one-sided limits do exist. As x approaches 3 from the left, p{x)
zeros in on a height of 6, and when x approaches 3 from the right, p (x) zeros
in on a height of 2. As with regular limits, the value of p (3) has no effect on
the answer to either of these one-sided limit problems. Thus,

limp(x)=6 and limp(x)=2
. } x =3

/ s 2T

A function like p ( x) in Figure 7-5 is called a piecewise function because it’s
got separate pieces. Each part of a piecewise function has its own equation —
like, for example, the following three-piece function:

for x=1
y=43x=-2 for l<x=10
X+5 for x=10

83
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Sometimes a chunk of a piecewise function connects with its neighboring
chunk, in which case the function is continuous there. And sometimes, like
with p (x), a piece does not connect with the adjacent piece — this results in
a discontinuity.

The formal definition of a limit —
just what you've been waiting for )

Now that you know about one-sided limits, I can give you the formal mathe-
matical definition of a limit. Here goes:

Definition of Limit: Let f be a function and let ¢ be a real number.

limf(x) exists if and only if

1. lim f(x) exists,
2. lim f(x) exists, and

3. lim f(x) = lim f(x)
X X

Calculus books always present this as a three-part test for the existence of a
limit, but condition 2 is the only one you need to worry about because 1 and
2 are built into 3, Just remember that you can't satisfy condition 3 if the left
and right sides of the equation are both undefined or both nonexistent; in
other words, it is not true that undefined = undefined or that nonexistent =
nonexistent. As long as you've got that straight, condition 3 is all you need
to check.

When we say a limit exists, it means that the limit equals a finite number.
Some limits equal infinity or negative infinity, but you nevertheless say that
they do not exist. That may seem strange, but take my word for it. (More
about infinite limits in the next section.)

Infinite limits and vertical asymptotes

A rational function like f (x) = 'Ei i ?5))_5; + ?;

and x = =1. Remember asymptotes? They're imaginary lines that a function

has vertical asymptotes at x = 3

gets closer and closer to as it goes up, down, left, or right toward infinity.

See Figure 7-6,
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Consider the limit of the function in Figure 7-6 as x approaches 3. As x
approaches 3 from the left, f (x) goes up to o; and as x approaches 3 from
the right, f(x) goes down to —oo, Sometimes it's informative to indicate this
by writing,

|illll_f{x}'—'t\.' and Iin_]_.'"{x}——m

The graph of
_ Ix+2){x-5)
= (s

Vertical Horizontal
aruca asymptote
asymptotes
- == — - e e o e i l - = ] s =
e
= —x

TR ]
Figure 7-6:

A typical
rational
function,
etz ooy mire wecr]

Butit’s also correct to say that both of the above limits do nof exist because
infinity is not a real number. If you're asked to determine the regular, two-
sided limit, lim/ (x ), you have no choice but to say that it does not exist
because the'lithits from the left and from the ri ght are unequal,

Limits at infinity — far out, man

Up till now, I've been looking at limits where x approaches a regular, finite
number. But x can also approach cc or —ce, Limits at infinity exist when a func-
tion has a hprizontra_ll asymptote. For example, the function in Figure 7-6,

SN S) e o : 7 7
Fx) (X=3)(x*1)" has a horizontal asymptote at y = 1, which the function
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crawls along as it goes toward  to the right and —oc to the lefl. (Going left,

—

the function crosses the horizontal asymptote at x = -7 and then gradually
comes down toward the asymptote.) The limits equal the height of the hori-

zontal asymptote and are written as

limf(x)=1 HI:I(J_ Iin_‘lfl[x)zl

¥ o

You see more limits at infinity in Chapter 8.

Calculating instantaneous
speed with limits

If you've been dozing up to now, WAKE UP! The following problem, which
eventually turns out to be an example of a limit problem (1 promise), brings
you to the threshold of real calculus. Say you and your calculus-loving cat are
hanging out one day and you decide to drop a ball out of your second-story
window. Here’s the formula that tells you how far the ball has dropped after

a given number of seconds (ignoring air resistance):

ht)=16¢*

(where h is the height the ball has fallen, in feet, and ¢ is the
amount of time since the ball was dropped, in seconds)

If you plug 1 into ¢ h is 16; so the ball falls 16 feet during the first second.

During the first 2 seconds, it falls a total of 16 - 2%, or 64 feet, and so on. Now,

what if you wanted to determine the ball's speed exactly 1 second after you
<MBER dropped it? You can start by whipping oul this trusty ol’ formula;

& falhiie .
@) Distance= rate - time, 50 Rate = distance/time

Using the rate, or speed formula, you can easily figure out the ball's average
speed during the 2nd second of its fall. Because it dropped 16 feet after 1
second and a total of 64 [eet alter 2 seconds, it fell 64 — 16, or 48 feet from

¢ = 1 second to t = 2 seconds. The following formula gives you the average
speed:

E- total distance

Average spee total time

_64-16
2—1

48

E

=48 feet per second
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But this Isn’t the answer you want because the ball falls faster and faster as it
drops, and you want to know its speed exactly 1 second after you drop it. The
ball speeds up between 1 and 2 secands, so this average speed of 48 feet per
second during the 2nd second is certain to be faster than the ball's instanta-
neous speed at the end of the 1st second. For a better approximation, calcu-
late the average speed between ¢ = 1 second and ¢ = 1.5 seconds. Alter 1.5
seconds, the ball has fallen 16 - 1.5%, or 36 feet, so from ¢ = 1 to ¢ = 1.5, it falls
36— 16, or 20 feet. Its average speed is thus

Average speed= %
=20
05

=40 feet per second

If you continue this process for elapsed times of a quarter of a second, a tenth
of a second, then a hundredth, a thousandth, and a ten-thousandth of a second,
you arrive at the list of average speeds shown in Table 7-2,

Table 7-2 Average Speeds from 1 Second to t Seconds
Ave, spee::i from
oSl a0 3 | 336 | 3216 | 32016 | 320016

As t gets closer and closer to | second, the average speeds appear Lo get
closer and closer to 32 feet per second,

Here's the formula we used to generate the numbers in Table 7-2. It gives you
the average speed between | second and ¢ seconds.

vy 2 2
o= o= 6]

Average spee =1

16(r*~1)
T o
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Figure 7-7:
e average
speed
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Figure 7-7 shows the graph of this function.
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This graph is identical to the graph of the line g (¢) = 16¢ + 16 except for the
hole at (1, 32). There's a hole there because if you plug 1 into ¢ in the average
speed function, you get

16(1° - 1)

Average speed= - T

0
0

which is undefined. And why did you get %? Because you're trying to determine

an average speed — which equals total distance divided by elapsed time — from

t=1tot=1.Butfromt=1tot=1Is, of course, no time, and “during” this point

in time, the ball doesn't travel any distance, so you get _zero feel ¢ the
zero secornds

average speed from(=1tof=1

Obviously, there's a problem here. Hold on to your hat, you've arrived at one
of the big “Ah ha!” moments in the development of differential calculus.

Instantaneous speed is defined as the limit of the average speed as the
elapsed time approaches zero,

The fact that the elapsed time never gets to zero doesn’t affect the precision
of the answer to this limit problem — the answer is exactly 32 feet per second,
the height of the hole in Figure 7-7. What's remarkable about limits is that
they enable you to calculate the precise, instantaneous speed at a singfe
point in time by taking the limit of a function that's based on an elapsed time,
a period between fwo points of time.
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Linking Limits and Continuity

TR
Figure 7-8:
The graphs
of f{x],

gk, plx),
-and glx).

Before I expand on the incredibly wonderful material on limits that I provide
in the earlier sections of this chapter, | want to introduce a related idea —
continuity. This is such a simple concept — really, trust me. A continuous func-
tion is simply a function with no gaps — a function that you can draw without
taking your pencil off the paper. Consider the four functions in Fi gure 7-8.

Whether or not a function is continuous is almost always obvious. The first
two functions in Figure 7-8 — / (x) and g (x) — have no gaps, so they're con-
tinuous. The next two — p (x) and g {x) — have gaps at x = 3, so they're not
continuous. That's all there is to it. Well, not quite. The two functions with
gaps are not continuous everywhere, but because you can draw sections of
them without taking your pencil off the paper, you can say that parts of those
functions are continuous. And sometimes a function is continuous every-
where it's defined. Such a function is described as being continuous over its
entire domain, which means that its gap or gaps occur at x-values where the
function is undefined. The function p (x) is continuous over its entire domain:
¢ (x), on the other hand, is not continuous over its entire domain because it's
not continuous at x = 3, which is in the function’s domain. Often, the impor-
tant issue is whether a function is continuous at a particular x-value. It is unless
there's a gap there.

All polynomial functions are continuous everywhere.

r
at 3
21 24
‘,Z -=1I S 2 -'1_1q"i it

89



90 rartin: Limits

ER

U

L
All rational functions — a rational function is the quotient of two polynomial
functions — are continuous over their entire domains.

Continuity and limits usually
qo hand in hand

Look at x = 3 on the four functions in Figure 7-8. Consider whether each func-
tion is continuous there and whether a limit exists at that x-value. The [irst
two, fand g, have no gaps at x = 3, so they’re continuous there. Both functions
also have limits at x = 3, and in both cases, the limit equals the height of the
function at x = 3, because as x gets closer and closer to 3 from the left and the
right, y gets closer and closer to f (3) and g (3), respectively.

Functions p and g, on the other hand, are not continuous at x = 3 — or you
can say that they're discontinuous there — and neither has a limit at x = 3. For
both functions, the gaps at x = 3 not only break the continuity, but they also
cause there to be no limits there because, as you move toward x = 3 from the
left and the right, you do not zero in on some single y-value.

So there you have it. Continuity at an x-value means there’s a limit for that
x-value. Discontinuity at an x-value means there's no limit there. Well, almost.
Keep reading for the exception.

The hole exception tells the whole story

The hole exception is the only exception to the rule that continuity and limits
go hand in hand, but it's a hiuge exception. And, | have to admit, it's a bit odd
for me to say that continuity and limits usually go hand in hand and to talk
about this exception because the exception is the whole point. When you
come right down to it, the exception is more important than the rule.
Consider the two functions in Figure 7-9.

These functions have gaps at x = 3 and are obviously not continuous there,
but they do have limits as x approaches 3. In each case, the limit equals the
height of the hole.

An infinitesimal hole in a function is the only place a function can have a limit
where it is not continuous.

So both functions in Figure 7-9 have the same limit as x approaches 3; the limit
is 9, and the facts that r (3) = 2 and that s(3) is undefined are irrelevant. For
both functions, as x zeros in on 3 from either side, the height of the function
zeros in on the height of the hole — that's the limit. This bears repeating —
even an icon:
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The limit at a hole is the height of the hole.
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“That’s greal,” you may be thinking, “But why should [ care?” Well stick with me
for just a minute. In the falling ball example in the “Calculating instantaneous

speed with limits" section earlier in this chapter, | tried to calculate the aver-

age speed during zero elapsed time. This gave me Z'gz‘rgn-fff%:” Because ﬂ

is undefined, the result was a hole in the function. Function holes often come

about from the impossibility of dividing zero by zero. It's these functions where
the limit process is critical, and such functions are at the heart of the meaning

of a derivative, and derivatives are at the heart of differential calculus,
y

A derivative always involves the undefined fraction 'ﬂand always involves the

limit of a function with a hole. (If you're curious, all the limits in Chapter 9 —
where the derivative is formally defined — are limits of functions with holes.)

Sorting out the mathematical
mumbo jumbo of continuity

All youy need to know to fully understand the idea of continuity is that the
continuity of a function at some particular x-value means there is no gap
there. However, because you may be tested on the following formal definition,
I suppose you'll want to know it.
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Definition of Continuity: A function f (x) is continuous at a point x = a if the
following three conditions are satislied:

1. f(a)is defined,

2. limf (x) exists, and o

3. f(a) =limf (x).

X =u

Just like with the formal definition of a limit, the definition of continuity is
always presented as a 3-part test, but condition 3 s the only one you need to
worry about because 1 and 2 are built into 3. You must remember, however,
that condition 3 is not satisfied when the left and right sides of the equation
are both undefined or nonexistent.

The 33333 Limit Mnemonic

Here's a great memory device that pulls a lot of information together in one
swell foop. It may seem contrived or silly, but with mnemonic devices, con-
trived and silly work. The 33333 limit mnemonic helps you remember two
things about limits, two things about continuity, and one thing aboul deriva-
tives. (I realize we haven't gotten to derivatives yet, but this is the best place
to present this mnemonic. Take my word for it — nothing’s perfect.)

First, note that the word “limit” has five letters and that there are five 3s in
this mnemonic. Next, write limit with a lower case “1" and uncross the “t” so it
becomes another “1" — like this:

limil
Now, the two “Is are for limits, the two “i"s are for continuity (notice that the
letter “i” has a gap In it, thus it’s not continuous), and the “m" is for slope
(remember y = mx + b?), which is what derivalives are all about (you see that
in Chapter 9 in just a few pages).

Fach of the five letters helps you remember three things — like this:

limil
33333

['.‘ 1 3 parts to the definition of a limit:

section, Remembering that it has three parts helps you remember the

;{ Look back to the definition of a limit in the “Formal definition of a limit"
Lu parts — trust me.
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1+~ 3 cases where a limit fails to exist:

i * At a vertical asymptote — called an infinite discontinuity — like at
X = 3 on function p in Figure 7-8.

* At a jump discontinuity, like where x = 3 on function g in Figure 7.8,
* With a limit at infinity of an oscillating function like lim sin x, where

o
the function goes up and down forever, never zeroing in on a single
| height,

|: ¥~ 3 parts to the definition of continuity;

Just as with the definition of a limit, remembering that the definition of
continuity has 3 parts helps you remember the 3 parts {see the section

| “Sorting out the mathematical mumbo jumbo of continuity” earlier in the
chapter).

| » 3 types of discontinuity:

i * A remouvable discontinuity — that’s a faney term for a hole — like
| the holes in functions rand s in Figure 7-9.

| * An infinite discontinuity like at x = 3 on function p in Figure 7-8,
| * A jump discontinuity like at x = 3 on function ¢ in Figure 7-8.

i Note that the three types of discontinuity (hole, infinite, and jump)
begin with three consecutive letters of the alphabet. There are no
gaps between A, i, and j, so they are continuous letters. Hey, was

[} this book worth the price or what?

| 1~ 3 cases where a derivative fails to exist:

| (explain this in Chapter 9 — keep your shirt on.)

. * At any type of discontinuity.

i * At a sharp point on a function — called a cusp,

¢ At a vertical tangent (because the slope is undefined there).
Well, there you have it.

You probably poticed that another way this mnemonic works is that it gives
you 3 cases where a limit fails to exist, 3 cases where continuity fails to exist,
and 3 cases where a derivative fails to exist. Holy triple trio of nonexistence
Batman, that's yet another 3 — the 3 topics of the mnemonic: lirnits, continuity,
and derivatives!
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Chapter8
Evaluating Limits

In This Chapte

b= Calculating limits with a calculator

- Multiplying conjugates
b Solving limits with a sandwich
» Finding limits at infinity

HFEENEENEIER N ' N

T Chapter 7 introduces the concept of a limit. This chapter gets down to the
) nitty-gritty and presents several technigues for calculating the answers
to limits problems. And while [ suspect that you were radically rapt and
totally transfixed by the material in Chapter 7 — and, don't get me wrong,
that's important stuff — it's the problem-solving methods in this chapter
that really pay the bills,

Easy Limits

A few limit problems are very easy. So easy that | don't have to waste your
time with unnecessary introductory remarks and unneeded words that take
up space and do nothing to further your knowledge of the subject — instead,
I can just cut to the chase and give you only the critical facts and get to the
point and get down to business and . . . Okay, so are you ready?

Limits to memovize

You should memorize the following limits. If you fail to memorize the last
three, you could waste a lof of time trying to figure them out. Take my word
for it.
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| 1 lim c=¢
i ¥ — ®

| (y=cis ahorizontal line, so the limit — which is the function height —
must equal ¢ regardless of the x-number.)

e lim <z = oo

x = 0"

—

B .-Ii.";-% = =00

Ay i
il .II_“::Y-[]

b lim 2=0

¥ — =0c

14 . sinx _
L 1‘_”_"],__;'( =1
|

!

; s cOsSi=1 _

| b a!lllrlll 5 =)

¥

| L xllp%(] + %) =g

Plugging and chugging

Plug-and-chug problems make up the second category of easy limits. Just
plug the x-number into the limit function, and if the computation results in
a number, that’s your answer. For example,

lim (x*=10)=-1

This method works for limits involving continuous functions and functions
that are continuous over their entire domains. These are well-duh limit prob-
lems, and, to be perfectly frank, there’s really no point to them. The limit is
simply the function value.

wise functions, unfess there's a discontinuity at the x-number you plug in.

NG/
g?}“"_ __}% The plug-and-chug method works for any type of function, including piece-
\‘, y (See Chapter 7 for a description of piecewise functions.)



Chapter 8: Evaluating Limits 9 7

If you plug the »-number into a limit like lim 1}% and you get any
“10

X =D
number (other than zero) divided by zero — like i then you know
that the limit does not exist. :

The “Real Deal” Limit Problems

Neither of the quick methods | present in the preceding section work for
most limit problems. If you plug in the x-number and the result is undefined,
usually =, you've got a “for real” limit problem — and a bit of work to do. This
is the main focus of this section. These are the interesting limit problems, the
ones that likely have infinitesimal holes, and the ones that are important for
differential calculus — you see more of them in Chapter 9.

When you plug in the x-number and the result is undefined, you can try four
things: your calculator, algebra, making a limit sandwich, and L'Hopital’s rule
(which is covered in Chapter 16).

Figuring a limit with your calculator

Say you want to evaluate the following limit: lim xx:'IZ_S The plug-and-chug
method doesn’t work because plugging 5 into x produces the undefined
result of H but as with most limit problems, you can solve this one on your
calculator.

Method one

The first method is to take a number extremely close to 5 and plug it into x. If
you have a calculator like a Texas Instruments TI-83, enter your number, say
4.9999, on the home screen, press the Sto (store) button, then the x button,
and then the Enter button (this stores the number into x). Then enter the
function, ch-': éﬁ‘ and hit Enter. The result, 9.9999, is extremely close to a
round number, 10, so that’s your answer. For good measure, store 4,999999
into x, then scroll back up to the function by hitting 2nd, Enter, Znd, Enter.
Hitting Enter once more gives you 9,999999 — even closer to 10. If you still
have any doubts, try one more number, Store 4.99999999 into x, scroll up to
the function, and hit Enter. The result, 10, clinches it. (The function value at
4.99999999 isn't actually 10, but it's so close that the calculator rounds it off
to 10.) By the way, if you're using a different calculator model, you can likely
achieve the same result with the same technique or something very close to it.
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Method two

T he second calculator method is to produce a table of values. Enter

y— i" in your calculator’s graphing mode. Then go to “table set up”

and euler the limit number, 5, as the “table start” number, and enter a small
number, say 0.001, for ATb! — that’s the size of the x-increments in the table.
Hit the Table button to produce the table. Now scroll up so you can see a
couple numbers less than 5, and you should see a table of values like the

one in Table 8-1.

Table 8-1 T1-83 Table for X =25 after Scrolling Up to 4.998

X 4
4.998 9.998
4.999 9.999
5 - arror
5.001 10.001
5.002 10.002
5.003 10.003

Because y gets very close to 10 as x zeros in on 5 from above and below, 10 is
the limit. k

These calculator techniques are useful for a number of reasons. Your calcula-
tor can give you the answers to limit problems that are impossible to do alge-
braically. And it can solve limit problems that you could do with paper and
pencil except that you're stumped. Also, for problems that you do solve on
paper, you can use your calculator to check your answers. And even when
you choose to solve a limit algebraically — or are required to do so —it's a
good idea to create a table like Table 8-1 not just to confirm your answer, but
to see how the function behaves near the x-number. This gives you a numeri-
cal grasp on the problem, which enhances your algebraic understanding of it.
If you then look at the graph of the function on your calculator, you have a
third, graphical or visual way of thinking about the problem,

Many calculus problems can be done algebraically, graphically, and numericatly.
When possible, use two or three of the approaches. Each approach gives you a
different take on a problem and enhances your grasp of the relevant concepts.
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Use the calculator methods to supplement algebraic methods, but don't rely too
much on them. First of all, the calculator techniques won't give you an exact
answer unless the numbers your calculator gives you are getting close to a
number you recognize — like 9.99998 is close to 10, or 0.333332 is close to ¥ or
perhaps you recognize that 1.414211 is very close to /2, But if the answer to a
limit problem is something like 21—1 you probably won't recognize it, The

number is approximately equal to 0.288675. When you see numbers in your

table closé to that decimal, you won'l recognize —1’,— as the limit — unless you're
an Archimedes, a Gauss, or a Ramanujan (member's of the mathematics hall of
fame). However, even when you don't recognize the exact answer in such cases,

you can still learn an approximate answer, in decimal form, to the limit question,

The second calculator limitation is that it won’t work at all with some pecu-
liar functions like limq Bix-5- sin( T=E ) This limit equals zero, but you can't

get that result with your caleulator.

By the way, even when the calculator methods work, calculators can do some
quirky things from time to time. For example, if you're solving a limit problem
where x approaches 3, and you put numbers in your calculator that are foo
close to 3 (like 3.0000000001), you can get too close to the calculator's maxi-
mum decimal length. This can result in answers that get further from the limit
answer, even as you input numbers closer and closer to the x-number,

The moral of the story is that you should think of your calculator as one of
several tools at your disposal for solving limits — not as a substitute for alge-
braic techniques.

Solving limit problems with algebra

You use two main algebraic techniques for “real” limit problems: factoring

and conjugate multiplication, I lump other algebra techniques in the section
“Miscellaneous algebra.” All algebraic methods involve the same basic idea.
When substitution doesn't work in the original function — usually because of

a hole in the function — you can use algebra to manipulate the function until
substitution does work (it works because your manipulation plugs up the hole).

Fun with factoring

] -
Here's an example. Evaluate Iin}g%_-%,
calculator in the preceding section,

the same problem you did with a
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1. Try plugging 5 into x — you should always try substitution first.
You get -H-— no good, on to plan B.
2. x*— 25 can be factored, so do it.

. x*=25
=5
(x=5)(x+5)

:.!".Ti x-5

3. Cancel the (x - 5) from the numerator and denominator.
=lim(x +5)

4, Now substitution will work.
=5+5

=10

& [
So, lim5 xxf ‘:;:5 = 10, confirming the calculator answer.

By the way, the function you got after canceling the (x - 5), namely (x + 5), is
2

e %5. except that the hole in the original

function at (5, 10) has been plugged. And note that the limit as x approaches 5

is 10, which is the height of the hole at (5, 10).

identical to the original function,

Conjugate multiplication — No, this has nothing to do with procreation

Try this method for rational functions that contain square roots. Conjugate

multiplication rationalizes the numerator or denominator of a fraction, which

&

X
x-4°

means getting rid of square roots, Try this one; Evaluate lirn4

1. Try substitution.
Plug in 4: that gives you 3 — on to plan B.

2, Multiply the numerator and denominator by the conjugate of Jx -2
which is /x + 2.

The conjugate of a two-term expression is just the same expression with
subtraction switched to addition or vice versa. The product of conjugates
always equals the first term squared minus the second term squared.

Now do the rationalizing.



Chapter 8: Evaluating Limits

li Jx =2
I.IEI!’ X'“ 4

= lim (/x ) (/x+2)
Xoad (x—d.) (,,fx+2)

=lim& 2:——
4G -D(/x +2)

l]'l ﬁ— —_
A= A(/x +2)
3. Cancel the (x - 4) from the numerator and denominator.
1

=Ii1T]——
=4 /x+2

4. Now substitution works.
1

Ji+2

Jx-2 1

x—-4 4

So, lim
X =

As with the factoring example, this rationalizing process plugged the hole in
the original function. In this example, 4 is the x-number, 4l is the answer, and

e X =2 ! 1.
the function ~—4 has ahole at (4, 4).

Miscellaneouns algebra

When factoring and conjugate multiplication don't work, try some other
basic algebra like adding or subtracting fractions, multiplying or dividing

fractions, canceling, or some other form of simplification. Here's an example;
1 1

Evaluate lim 3‘%15—4
X =
1. Try substitution.
Plug in 0: That gives you %— no goodl.

2. Simplify the complex fraction (that's a big fraction that contains little
fractions) by multiplying the numerator and denominator by the least
common denominator of the little fractions, namely 4(x + 4).

Note; Adding the little fractions in the numerator would also work, but
it's a bit longer than the method described here.
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o d-(x+4)
=lim o )

= m G+ 4)

oy =1
fY veomry)
3. Now substitution works.

g
A0+

=i
16
That's the limit.

Take a break and make yourself
a limit sandwich

When algebra doesn't work, try making a limit sandwich. The best way to
understand the sandwich or squeeze method is by looking at a graph. See

Figure 8-1.
|- simucs e mamn |
Figure 8-1:
The f
sandwich (d_\

method for \
solving S
a limit.

Functions f /f—

andihare ST
the bread, 4 -3 2 -
and gis the

salami. 27




. +-
Figure 8-2:

The graph of

g{x)—xsin%

Look at functions f, g, and # in Figure 8-1: #is sandwiched between fand h.

If near the x-number — 2 in this example — fis always higher than or the
same height as g and g is always higher than or the same height as 4, and if
Eifr;f {x) =}iil‘;ﬁ (x), then g (x) must have the same limit because it's sand-
wiched or squeezed between fand A. The limit of both fand A as x approaches
21s 3. 50, 3 has to be the limit of g as well, It's got nowhere else to go. Here’s
another example: Evaluate limxsin .

1. Try substitution.

Plug 0 into x. That gives you sin 'I!T — no good, can't divide by zero. On to
plan B.

2, Try the algebraic methods or any other tricks you have up your
sleeve.

Knock yourself out. You can't do it. Plan C.
3. Try your calculator.

It's always a good idea to see what your calculator tells you even if this is
a "show your work™ problem. To graph this function, set your graphing
calculator’s mode to radian and the window to

xmin=-04

xmax = (.4
ymin=-03
ymax=1{.3
Figure 8-2 shows what the graph looks like:

.

It definitely looks like the limit of g is zero as x approaches zero from the
left and the right. Now, check the table of values on your calculator (set
ThiStart to 0 and ATb! to 0.001). Table 8-2 gives some of the values from
the table. Note: Scroll down to see all of the numbers from Table 82 on
your calculator,

Chapter 8: Evaluating Limits 1 03
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Table 8-2 Table of Values for g(x) = xsin%
X gix)

0 error
00 .0008269
002 -.000936
003 0009565
004 - 003882
005 - 004366
006 - 000969
007 - 006975
.008 -004928
.009 - 008234

These numbers sort of look like they're getting closer and closer to zero as
x gets close to zero, but they're not convincing. This type of table doesn't
work so great for oscillating functions like sine or cosine. (Note that some
function values on the table, for example —0.000969 for x = 0.006, are
closer to zero than other values higher on the table where x is smaller.
That’s the opposite of what we want to see.)

A better way of seeing that the limit of g Is zero is to use the first calcula-
tor method [ discuss in the section “Figuring a limit with your calcula-
tor.” Enter the function on the home screen and successively plug in the
x-values listed in Table 8-3 to obtain the corresponding function values.

Table 8-3 Another Table of Values for g(x) = xsin%
X glx
Al -054
01 -.0051
.00 .00083
.0001 -.000031
.00001 .00000036

Now you can definitely see that g is headed toward zero.
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The long and winding road

Consider the function, g{x}'-—-xsin%, shown
in Figures 8-2 and 8-3 and discussed in the sec-
tion about making a limit sandwich. It’s defined
everywhere except at zero. If we now alter it
slightly— by defining f (0) to be 0— we create
a function with bizarre properties. The function
is now continuous everywhere; in other words,
it has no gaps. But at (0, 0), it seems to contra-
dict the basic idea of continuity that says you
can trace the function without taking your
pencil offthe paper.

Imagine starting anywhere on g(x ) to the left
of the y-axis and driving along the winding road
toward the origin, {0, 0). Get this. You can start
your drive as close to the origin as you like —
how about the width of a proton away from
(0,0)— and the length of road between you and
(0, 0} is infinitely long! That's right. It winds up
and down with such increasing frequency as
you get closer and closer to (0, 0) that the length
ot your drive is actually infinite, despite the fact
thateach “straight-away” is getting shorter and
shorter. On this long and winding road, you'll
never getto her door.

This altered function is clearly continuous at
every point — with the possible exception of
(0, 0) — because it's a smooth, connected,
winding road. And because 'Ii_r‘n‘J x sin+ = 0 (see
the limit sandwich section for proof), and
because f(0) is defined to be 0, the three-part
test for continuity at 0is satisfied. The function
is thus continuous everywhere.

But tell me, how can the curve ever reach (0, 0)
or connect ta (0, 0) from the left (or the right)?
Assuming you can traverse an infinite distance
by driving infinitely fast, when you finally drive
through the origin, are you on one of the up legs
of the road or one of the down legs? Neither
seems possible because no matter how close
you are to the origin, you have an infinite
number of legs and an infinite number of turns
ahead of you. There is no last turn before you
reach (0, 0). So it seems that the function can't
connecttothe origin and that, therefore, it can't
be continuous there — despite the fact that the
math tells us that it is.

Here's another way of looking at it. Imagine a
vertical line drawn on top of the function at
x=-0.2. Now slowly slide that line to the right
over the function until you pass over (0, 0). There
are no gaps in the function, so ateveryinstance,
the vertical line crosses the function some-
where. Think aboutthe point where the vertical
line intersects with the function. As you drag the
line to the right, that point travels along the
function, winding up and down along the road,
and, as you drag the line over the origin, the
point reaches and then passes (0, 0). Now tell
me this. When the point hit (0, 0), was it on its
way up or down? How can you reconcile all
this? | wish | knew.

Stuff like this really messes with your mind.

i
I
|

— —_—

4. Now you need to prove the limit mathematically, even though you've
already solved it on your calculator. To do this, you need to make a

Chapter 8: Evaluating Limits ’ 05

limit sandwich. (Fooled you — bet you thought Step 3 was the last step.)

The hard part about using the sandwich method is coming up with the
“bread” functions. (Functions fand A are the bread and g is the salami.)
There’s no automatic way of doing this. You've got to think about the
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ST
Figure 8-3:

A graph of
fx)=|x|
h(x)=~|x|
and
g{x)-xsin%.
It's a bow tie!

shape of the salami function, and then use your knowledge of functions
and your imagination to come up with some good prospects for the
bread functions.

Because the range of the sine function is from negative 1 to positive 1,
whenever you multiply a number by the sine of anything, the result either
slays the same distance from zero or gets closer to zero. Thus, .‘rsiu% will
never get above | x|or below —|x|. So try graphing the functions f({x) = | x|
and hi{x)=-|x|along with g (x) to see if fand k make adequate bread
functions for g. Figure 8-3 shows that they do.

We've shown — though pcrhaps not to a mathematician’s satisfaction,
egad! — that f (x) = g (x) = h(x). And because Ilmf(x] = Ilmh{x) 0,
it follows that g ( x) must havc the same limit: voila — llmg (x} 0.

Evaluating Limits at Infinity

In the previous sections, | look at limits as x approaches a finite number, but
you can also have limits where x approaches infinity or negative infinity.
Consider the function f (x) = % and check out its graph in Figure 8-4.
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T

Figure 8-4;

The graph of
1

f (x } =%

T

You can see on the graph that as x gets bigger and bigger — in other words,
as x approaches infinity — the height of the function gets lower and lower but
never gets to zero. This is confirmed by considering what happens when you
plug bigger and bigger numbers into }c The outputs get smaller and smaller,
This graph thus has a horizontal asymptote of y = 0 (the x-axis), and we say
that I1m 5 = 0. The fact that x never actually reaches infinity and that f never
dets to zero has no relevance. When we say that Iim _L 0, we mean that as x
gets bigger and bigger without end, fgets closer and closer to zero — fis clos-
Ing in on zero forever. The function falso approaches zero as x approaches
negative infinity, which is written as lim + = 0.

&= ot

Limits at infinity and hovizontal
asymptotes

Horizontal asymptotes and limits at infinity always go hand in hand. You
can’t have one without the other. If you've got a rational function like
flx)= %, determining the limit at infinity or negative infinity is the
same as finding the location of the horizontal asymptote.

Here's whiat you do. First, note the degree of the numerator (that’s the high-
est pnwer of x in the numerator) and the degree of the denominator. Now,
you've got three cases:

107
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[l +~ If the degree of the numerator is greater than the degree of the denomina-
I'I - — 3

I tor, for example f(x) = ﬁr?x'""'f- 3 l, there's no horizontal asymptote and

| the limit of the function as x approaches infinity (or negative infinity)

does not exist.

|II
II

| 1~ If the degree of the denominator is greater than the degree of the numer-
| ator, for example g (x) = ;f+% the x-axis (that's the line y = () is the

|  horizontal asymptote and limg (x) = lim g (x)=0.

| &~ If the degrees of the numerator and denominator are equal, take

'r'f; the coefficient of the highest power of x in the numerator and divide
. it by the coefficient of the highest power of x in the denominator.
That quotient gives you the answer to the limit problem and the
height of the asymptote. For example, if h (x)= Ax° = 10x+1

) 4 5x“+2r"'—x'
| limh(x)=limh(x)= 5 and /i has a horizontal asymptote at y =
_ X = m X s -

(7108

.

To impress your friends, point your index finger upward, raise one eyebrow,
and say in a professorial tone, “In a rational function where the numerator and
denominator are of equal degrees, the limit of the function as x approaches
infinity or negative infinity equals the quotient of the coefficients of the lead-
ing terms. A horizontal asymptote occurs at this same value.”

Substitution doesn’t work for the problems in this section. If you try plugging
oo into x in any of the rational functions in this section, you get ==, but that
does not equal 1. A result of 2 tells you nothing about the answer to a limit

problem,

Solving limits at infinity with a calculator

Here's a problem that can't be done by the method in the previous section
because it's not a rational function: Iim_{/xz +x - x}. But it's a snap with a
calculator. Enter the function in graphing mode, then go o table selup and set

TbiStart to 100,000 and ATbI to 100,000. Table 84 shows the results,

Table 8-4 Table of Values for y= /x*+ x — x
S 14
100,000 4999988 E
200,000 4999994
300,000 4999996
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e X y
40[],[1!][]__ o7 4999997

e 500,000 4999998
600,000 e 4999998
700,000 K 4999998
800,000 z X 4939999
900,000 4999999

You can see that y is getting extremely close to 0.5 as x gets larger and larger. So
0.5 is the limit of the function as x approaches infinity, and there's a horizontal
asymptote at y = 0.5. If you have any doubts that the limit equals 0.5, go back to
table setup and put in a humongous ThiStart and ATb, say 1,000,000,000, and
check the table results again. All you see is a column of 0.5s. That's the limit,
(By the way, unlike with the rational functions in the two previous sections, the
limit of this function as x appmat:lles negative infinity doesn't equal the limit as
x approaches infinity; lim (,f x+x —x) co because when you plug in —o you
get o + oo which equals m) One more thing: Just as with regular limits, using a
calculator for infinite limits doesn’t give you an exact answer unless the num-
bers in the table are getting close to a number you recognize like 0.5.

Substitution does not work for the above problem, llm{gx +x - x} If you
plug =« into x, you get oo — oo which does not equal zero. A result of oo — oo tells
you nothing about the answer to a limit problem.

Using algebra for limits at infinity

Now try some algebra for the problem J_Iinl(./x”+J_c - .r). You got the answer
with a calculator, but all things being equal, it's better to solve the problem
algebraically because then you have a mathematically airtight answer. The
calculator answer in this case is very convineing, but it's not mathematically
rigorous, so il you stop there, the math police may get you.

1. Try substitution — always a good idea.

No good. You get o — o5, which tells you nothing — see the Warning
in the previous section. On to plan B,
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Because (/x*+x - x | contains a square root, the conjugate multiplica-
tion method would be a natural choice, except that that method is
used for fraction functions. Well, jl]‘:ﬂ( Jxt4x - x) over the number
1 and, voila, you've got a fraction: J/x*+Xx —x Nowdo the conjugate
multiplication. 1

2. Multiply the numerator and denominator by the conjugate of
(V2% x = .!:} and simplify.

]
: T R
|1n]f
X

i fxix x} (.rx lxix}

) 1_ (-'.xllti.xj

X +x-x*
=fx'tx +x

= lim X

T p—— (Factor x out of the denominator)
2 ""x{g’l-l = T l)

1

'[|m o
B ta]

3. Now substitution does work.

Spaar]
H1 + l i

T 1 (Recall that lim ch =0 from the “Limits to memorize”
JL+0+1 section) >

midlon
1T

il
2

1

Thus, lim (.\,n' Xitx — x:] ok which confirms the calculator answer.
X oo
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Differentiation
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In this part . . .

Di[[ercntiation is the first of the two big calculus ideas;
integration (discussed in Part V) is the second.
Differentiation and integration constitute the core of the
calculus curriculum. Differentiation is the process of find-
ing a derivative, and a derivative is just a rate like miles
per hour or dollars per item. On the graph of a curve, the
derivative tells you the curve's slope or steepness.
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Chapter 9
Differentiation Orientation
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Chapter

- Discovering the simple algebra behind the calculus

i Getting a grip on weird calculus symbols
»- Differentiating with Laurel and Hardy

#» Finding the derivatives of linear and quadratic cquations

» Tackling the tangent line problem and the difference quotient

HEENERERNENRE R

S8 D@00 de

D ifferential calculus is the mathematics of change and the mathematics
of infinitesimals. You might say that it's the mathematics of infinitesimal
changes — changes that occur every gazillionth of a second.

Without differential calculus — if you've got only algebra, geometry, and
trigonometry — you're limited to the mathematics of things that either

don’t change or that change or move at an unchanging rate. Remember those
problems from algebra? The train leaves the station going north at 80 mph,
you drive east at 50 mph. . . . You can handle such a problem with algebra
because the speeds or rates are unchanging. Our world, however, isn't one
of unchanging rates — rates are in constant flux.

Think about putting man on the moon. Apollo 11 took off from a mouvirig
launch pad (the earth is both rotating on its axis and revolving around the
sun). As the Apollo flew higher and higher, the friction caused by the atmos-
phere and the effect of the earth’s gravity were changing not just every
second, not just every millionth of a second, but every infinitesimal fraction
of a second, The spacecraft's weight was also constantly changing as it
burned fuel. All of these things influenced the rocket’s changing speed. On
top of all that, the rocket had to hit a moving target, the moon, All of these
things were changing, and thelir rates of change were changing. Say the rocket
was going 1000 mph one second and 1020 mph a second later — during that
one second, the rocket's speed literally passed through the infinite number of
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different speeds between 1000 and 1020 mph. How can you do the math for
these ephemeral things that change every infinitesimal part of a second? You
can't do it without differentiation.

Differential calculus is used for all sorts of terrestrial things as well. Much of
modern economic theory would be impossible without differentiation. In eco-
nomics, everything is in constant flux. Prices go up and down, supply and
demand fluctuate, and inflation is constantly changing. These things are
constantly changing, and the ways they affect each other are constantly
changing. You need calculus for this.

Differential calculus is one of the most practical and powerful inventions in
the history of mathematics. So let’s get started already.

Differentiating: It's Just
Finding the Slope

A%

Differentiation is the first of the two major ideas in calculus — the other is
integration, which I cover in Part IV. Differentiation is the process of finding
the derivative of a function like y = x*. The derivative is just a fancy calculus
term for a simple idea you know from algebra — slope. Slope, as you know, Is
the fancy algebra term for steepness. And steepness is the fancy word for , . .
No! Steepness is the ordinary word you've known since you were a kid, as in,
“Hey, this road sure is steep.” Everything you study in differential calculus all
relates back to the simple idea of steepness.

In differential calculus, you study differentiation, which is the process of
deriving — that's finding — derivatives. These are big words for a simple idea:
Finding the steepness or slope of a line or curve. Throw some of these terms
around to impress your friends. By the way, the root of the words differential
and differentiation is difference — | explain the connection at the end of this
chapter in the section on the difference quotient.

Consider Figure 9-1. A steepness of 4 means that as the stickman walks one
foot to the right, he goes up ¥ foot; where the steepness is 3, he goes up 3
feet as he walks 1 foot to the right. Where the steepness is zero, he's at the
top, going neither up nor down; and where the steepness is negative, he’s
going down. A steepness of -2, for example, means that he goes down 2 feet
for every foot he goes to the right. This is shown more precisely In Figure 9-2.

To remember that going down to the right (or up to the left) is a negative
slope, picture an upper case “N” as shown in Figure 9-3.
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Variety is the spice of life

Everyone knows that 3°= 9. Now, wouldn't it
be weird if the next time you read this math ;act,
itwas written as*3 = 90or,3 = 97 How does3 = 9
grab you? Or ?zg? Variety is not the spice
of mathematics. When mathematicians decide
on a way of expressing an idea, they stick to
it — except, that is, with calculus. Are you
ready? Hold on to your hat. All of the following
are different symbols for the derivative —
they all mearn axar:l.‘!y the same thing:

orforyorD.forDf or 0.y or 0.f (x ). There
are mare. Now, you've got two alternatives:
1) Beat your head against the wall trying to
figure out things like why some author uses one
symbol one time and a different symbol another
time, and what exactly does the d or f mean
anyway, and so on and so on, or 2) Don't try to
figure it out; just treat these different symbals
like words in different languages for the same
idea —in other words, don't sweat it. | strangly

dfix)

df o dfx o d recommend the latt tion.
dx or ¢ O =g¢ Or g ﬂ;ﬂnrf{x}ury @ latter optio

‘g&"“m Don't be among the legions of students who mix up the slopes of vertical and
i‘{ 2 horizontal lines. How steep is a (lat, horizontal road? Not steep at all, of
) course. Zero steepness. S0, a horizontal line has a slope of zero. What's it like
to drive up a vertical road? You can't do it. And you can’t get the slope of a

vertical line — it doesn’t exist, or, as mathematicians say, it's undefined.

The slope of a line

Keep going with the slope idea — by now you should know that slope is what
differentiation is all about. Take a look at the graph of the line, y=2x+3, in
Figure 9-4.

You remember from algebra — I'm tolally confident of this — that you can find
points on this line by plugging numbers into x and calculating y: plug 1 into x
and y equals 5, which gives you the point located at (1, 5); plug 4 into x and y
equals 11, giving you the point (4, 11), and so on.

I'm sure you also remember how to calculate the slope of this line. 1 realize that
no calculation is necessary here — you go up 2 as you go over 1, so the slope
is automatically 2. You can also simply note that y = 2x + 3 is in slope-intercept
form (y = mx + b) and that, since m = 2, the slope is 2. (See Chapter 5 if you

want to review y = mx + b.) But bear with me because you need to know what

s
u'.BEs follows. First, recall that

rise
i i) Stope = 55
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Figure 9-4:
The graph
of y=2x4 3.
e

-« Stairway to Heaven
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/-HIJ 1234656782910
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The rise is the distance you go up (the vertical part of a stair step), and the run
is the distance you go across (the horizontal part of a stair step). Now, take any
two points on the line, say, (1, 5) and (6, 15), and figure the rise and the run. You
rise up 10 from (1, 5) to (6, 15) because 5 plus 10 is 15 (or you could say that
15 minus 5 is 10). And you run across 5 from (1, 5) to (6, 15) because 1 plus 5
is 6 (or in other words, 6 minus 1 is 5). Next, you divide to get the slope:

.. Hse
Slope= T

=10
5

=2
Here's how you do the same problem using the slope formula:

Y:— W
X=X\

Slope=
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Plug in the points (1, 5) and (6, 15):

15-5
=1l

Slope =

=y

Okay, let’s summarize what we know about this line. Table 9-1 shows six
points on the line and the unchanging slope of 2,

Table 9-1 Points on the Line y=2x+ 3 and
the Slope at Those Points
X
{harizontal position) 1 2 3 4 i 6 etc,
¥
(hoight) || 5 : 1 9 n 13 15 elc.
slope 2 2 2 2 2 2 ete.

The devivative of a line

The preceding section showed you the algebra of slope. Now, here’s the
calculus. The derivative (the slope) of the line in Figure 94 Is always 2,

S0 you write

dy _
Ge=2

(Read dee y dee x equals 2.)
Another common way of writing the same thing is
ye2
(Read y prime equals 2.)

And you say,

The derivative of the function, y = 2x + 3, is 2.

(Read The derivative of the function, y = 2x + 3, is 2. That was a joke.)
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The Derivative: It’s Just a Rate

EENETEEsTE
Figure 9-5:
Laurel and

Hardy —
hlithely
unaware of

the calculus -

implications.
5k b it

Here's another way to understand the idea of a derivative that's even more fun-
damental than the concept of slope: a derivative is a rafe. So why did I start the
chapter with sfope? Because slope is in some respects the easier of the two con-
cepts, and slope is the idea you return to again and again in this book and any
other calculus textbook as you look at the graphs of dozens and dozens of func-
tions. But before you've got a slope, you've got a rate. A slope is, in a sense, a
picture of a rate; the rate comes first, the picture of it comes second. Just like
you can have a function before you see its graph, you can have a rate before you
see it as a slope.

Calculus on the playground

Imagine Laurel and Hardy on a teeter-totter — check out Figure 9-5.

e

Assuming Hardy weighs twice as much as Laurel, Hardy has to sit twice as
close to the center as Laurel for them to balance. And for every inch that
Hardy goes down, Laurel goes up two inches. So Laurel moves twice as much
as Hardy. Voila, you've got a derivative!

A derivative is simply a measure of how much one thing changes compared to
another — and that’s a rate.

Laurel moves twice as much as Hardy, so with calculus symbols you write
dL=2dH
Loosely speaking, df can be thought of as the change in Laurel's position

and dff as the change in Hardy's position. You can see that if Hardy goes
down 10 inches then dH is 10, and because dL equals 2 times dH, dL is 20 —
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so Laurel goes up 20 inches. Dividing both sides of this equation by dH
gives you

Al

dH 2
And that’s the derivative of Laurel with respect to Hardy. (It’s read as, “dee L,
dee f,” or as, “the derivative of L with respect to /.”) The lact that g—H =2
simply means that Laurel is moving 2 times as much as Hardy. Laurel's rate
of movement is 2 inches per inch of Hardy's movement.

Now let’s look at it from Hardy’s point of view. Hardy moves half as much as
Laurel, so you can also write

el
dif zdf_

Dividing by dL gives you

dH _1

dl. 2
This is the derivative of Hardy with respect to Laurel, and it means, of course,
that Hardy moves % inch for every inch that Laurel moves. Thus, Hardy's rate is
% inch per inch of Laurel's movement. By the way, you can also get this deriva-
tive by _taklng % = 2, which Is the same as g—f:, = %, and flipping it upside down
to get i = 7

These rates of 2 inches per inch and % inch per inch may seem a bit odd because
we often think of rates as referring to something per unit of time, like miles per
frour. But a rate can be anything per anything. So, whenever you've got a this per
that, you've got a rate; and if you've got a rate, you've got a derivative.

Speed — the most familiar rate

Speaking of miles per hour, say you're driving at a constant speed of 60 miles
per hour. That's your car's rate, and 60 miles per hour 1s the derivative of your
car’s position (p) with respect to time (f). With calculus symbols, you write

dp _ .. miles
at = hour

This tells you that your car's position changes 60 miles for each hour that the
time changes. Or you can say that your car’s position (in miles) changes 60
times as much as the time changes (in hours). Again, a derivative just tells
you how much one thing changes compared to another,
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Figure 9-6:
The graph
of [=2H.

ot o S |

And just like the Laurel and Hardy example, this derivative, like all derivatives,
can be flipped upside down:

dt _ 1 hours
dp 60 mile

This hours-per-mile rate is certainly much less familiar than the ordinary miles-
per-hour rate, but it’s nevertheless a perfectly legitimate rate, It tells you that
for each mile you go the time changes 1‘:‘.]_[] of an hour. And it tells you that the
time (in hours) changes B0 48 much as the car's position (in miles).

There's no end to the different rates you might see: miles per gallon (for gas
mileage), gallons per minute (for water draining out of a pool), output per
employee (for a factory's productivity), and so on. Rates can be constant or
changing. In either case, every rate is a derivative, and every derivative is a rate.

The rate-slope connection

Rates and slopes have a simple connection. All of the previous rate examples
can be graphed on an x-y coordinate system, where each rate appears as a
slope. Consider the Laurel and Hardy example again. Laurel moves twice as
much as Hardy. This can be represented by the following equation:

L=2H

Figure 9-6 shows the graph of this function.

L
A
20-
18
161
= 14
£ 12
£ 10
]
G
Jil
2

- —t- > H

2406 810
(inches)

The inches on the H-axis indicate how far Hardy has moved up or down from
the teeter-totter’s starting position; the inches on the L-axis show how far Laurel
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has moved up or down. The line goes up 2 inches for each inch it goes to

the right, and its slope is thus {, or 2. This is the visual depiction Dfﬁ'ﬁ =2,
and it shows that Laurel's position changes 2 times as much as Hardy's,

One last comment before moving on. You know that slope = 15€. Well, you

can think of dL as the rise and dH as the run. That ties everything together
quite nicely.

rise _ dlL _

slope= 55 = T rate

Remember, a derivative is just a slope, and a derivative is just a rate.

The Derivative of a Curve

e e = s |
Figure 9-7:
The graph

o
ofy= TX

The previous sections in this chapter have involved linear [unctions — straight
lines with unchanging slopes. But if all functions and graphs were lines with
unchanging slopes, there'd be no need for calculus, The derivative of the
Laurel and Hardy function graphed above is 2, but you don’t need calculus to
determine the slope of a line. Calculus is the mathematics of change, so now
is a good time to move on to parabolas, curves with changing slopes. Figure 9-7
is the graph of the parabola, y= 1 X

(1,025) 27
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Notice how the parabola gets steeper and steeper as you go to the right. You
can see from the graph that at the point (2, 1), the slope is 1; at (4, 4), the slope
is 2; at (6, 9), the slope is 3, and so on. It turns out that the derivative of this
function equals 5 X (I show you how I got that in a minute). To find the slope
of the curve at any point, you just plug the x-coordinate of the point into the
derivative, 5% and you've got the slope. For instance, if you want the slope at
the point (3, 2.25), plug 3 into the x, and the slope is 5 times 3, or 1.5. Table 9-2
shows some points on the parabola and the steepness at those points.

Table 9-2 Points on the Parabola y= % x*and
the Slopes at Those Points
= - =
(horizontal position) 1 2 3 3 5 6 e1c.
¥
(height) 0.25 1 2.25 4 6.25 9 ete.
1
7 0.5 1 1.5 ) 2.5 3 etc.
(slope)

Here's the calculus. You write

And you say,

The derivative of the function y= % x'is % X,
Or you can say,
The derivative of % x'is i— X

Now, | promised to tell you how to derive this derivative of y = % x4

1. Take the power and put it in front of the coefficient.

51

4
2. Multiply.

e | ; 3
2 times 718580 that gives you % x*

123
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3. Reduce the power by 1.

In this example the 2 becomes a 1. So the derivative is

%x' m‘just%x

This and many other differentiation techniques are discussed in Chapter 11,

The Difference Quotient

Eem—r—
Figure 9-8:
The graph

ofy=x*
with a
tangent line
at(2,4)

Sound the trumpets! You come now to what is perhaps the cornerstone of dif-
ferential calculus: the difference quotient, the bridge between limits and the
derivative. I keep repeating — have you noticed? — the important fact that a
derivative is just a slope. You learned how to find the slope of a line in alge-
bra. In Figure 97, | gave you the slope of the parabola at several points, and
then [ showed you the short-cut method for finding the derivative — but I left
out the important math in the middle. That math involves limits, and it takes
us to the threshold of calculus. Hold on to your hat.

rise

Stope is defined as 37, and
Slope = iq - ;'I

To compute a slope, you need two points to plug into this formula, For a line,
this is easy. You just pick any two points on the line and plug them in. But say
you want the slope of the parabola below at the point (2,4), as shown in
Figure 9-8,

¥

100 T

90
a0
0T
B0+
0 4
an
30
20
10
“a:‘-u-—v-i?-f-r— '
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You can see the line drawn tangent to the curve at (2, 4}. and because the
slope of the tangent line is the same as the slope of the parabola at (2,4), all
you need is the slope of the tangent line. But you don't know the equation of
the tangent line, so you can't get the second point — in addition to (2,4)—
that you need for the slope formula.

Here’s how the inventors of calculus got around this roadblock. Figure 9-9
shows the tangent line again and a secant line intersecting the parabola at
(2,4)and at (10, 100).

BER
@aﬁ’" A secant line is a line that intersects a curve at two points. This is a bit over-
! simplified, but it"ll do.

{10, 100}

T
Figure 9-9;
The graph

of y= x?
with a
tangent
line and a
secant line.

[ s e |

The slope of this secant line Is given by the slope formula:

lope = e
Slope= %5

Ye— W1
o=

_100-4
=2

_9%6

8
=12

You can see that this secant line is quite a bit steeper than the tangent line, and
thus the slope of the secant, 12, is higher than the slope you're looking for.
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Now add one more point at (6,36) and draw another secant using that point
and (2,4 ) again. See Figure 9-10,

Calculate the slope of this second secant:

36-4
6-2

=32
=

Slope =

=8

You can see that this secant line is a better approximation of the tangent line
than the first secant.

Now, imagine what would happen if you grabbed the point at (6, 36) and slid
it down the parabola toward (2,4), dragging the secant line along with it, Can
you see that as the point gets closer and closer to (2,4), the secant line gets
closer and closer to the tangent line, and that the slope of this secant thus
gels closer and closer to the slope of the tangent?

S0, you can get the slope of the tangent if you take the limit of the slope of this
moving secant. Let's give the moving point the coordinates ( xz,yz). As this
point (xz ,}'2} slides closer and closer to (xl,yl}, namely (2, 4), the run — that’s
(x2—x1) — gets closer and closer to zero, So here's the limit you need:

5.'.'{},06'.'9.! tangent = lim {Sl’.'oﬂeafmumw sumn!}

as. painl slides
tovaard (2, 4)

s J"z“’]
_m!."Pn X1— 2

Watch what happens to this limit when you plug in three more points on the
parabola that are closer and closer to (2, 4}:

When the point (x:,y:) slides to (2.1,4.41), the slope is 4.1
When the point slides to (2.01,4.0401), the slope is 4.01
When the point slides to (2.001,4.004001), the slope is 4.001

Sure looks like the slope is headed toward 4.
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<MBER

-t

As with all limit problems, the variable in this problem, the run, approaches
but never actually gets to zero. If it got to zero — which would happen if you
slid the point you grabbed along the parabola until it was actually on top of
(2,4} — you'd have a slope of o which is undefined. But, of course, that's pre-
cisely the slope you want — the slope of the line when the point does land on
top of (2,4). Herein lies the beauty of the limit process. With this limit, ynu
get the exact slope of the tangent line even though the limit function,
generates slopes ol secant lines.

2!

Here again s the equation for the slope of the tangent line:

o V=4
SIIOPL “nilll]ll'l Xa— 2

And the slope of the tangent line is — you guessed it — the derivative,

The derivative of a function f (x ) at some number x = ¢, written as f* {c), is the
slope of the tangent line to f drawn at ¢,

] . :
The slope [raction ; — Is expressed with algebra terminology. Now let’s

rewrite it to give it thatlﬁighialutln caleulus look. But first, a definition:

There’s a fancy calculus term for the general slope fraction, ?jﬁ or %_—i"

A fraction is a quotient, right? And both y: - y; and x:— x, are differences, right?

$0, voila, it's called the difference quotient.

Okay, here's the most common way of writing the difference quotient {you may
run across other, equivalent ways). First, the run, x.— x: (in this example, x. - 9),
is called — don’t ask me why — h. Next, because x,= 2 and the run equals h, x
equals 2 + A, You then write y as £ (2) dIld y2as f (2 + ). Making all the F.-Lll)h'ﬁ-
tutions gives you the definition of the derivative of x* at x = 2 as the limit of
the dilference quotient:

vron v F(2HH)=F(2)
e e
jin}J is simply the shrinking ﬂ:‘g stair step you can see in

Figure 9-10 as the point slides down the parabola toward (2,4). Take a look

at Figure 9-11.

F(24h)—F(2)
i

127



’ 2 8 Part IV: Differentiation

100

AT T 50

Figure 9-10: 40
The graph of a0 4

¥=x" with 2
atangent
line and two 0+
secant lings. *“"‘U &
s e e |
¥
70
)
2+ 8, £(2+ 1
50 4
o | 40 4
Figure 9-11:
gGr;:i|.1h of 2 {2+ - £12)
= 1
Vet 04+
showing
how a limit 10
produces _.
the slope of = "“r-—a — i ’
the tangent 1 Lna
line at (2, 4). s 2
| Srmaaniia ra = Sapmecen. h

Doing the math gives you, at last, the slope of the tangent line at (2,4 ):

,‘rf(z} :Einlw

- SE= 2
Q)
-0
(4+4h+n')-4
- i —
i 0 h

oAbt i
_JIF]-I-I} h
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[t v s i i
Figure 9-12;
Graph of
y=xt
showing
how a limit
produces
the slope of
the tangent
line at the
genearal
point
(%f(x))

=lim (i)
h=0 h

=’!11:r}l(d 1+ )

=440
=1

So the slope is 4. (By the way, it's a meaningless coincidence that the slope at
(2,4) happens to be the same as the y-coordinate of the point.)

Definition of the Derivative: If you replace the point (2, £(2)) in the above
limit equation with the general point ( x, f (x}}, you get the general definition
of the derivative as a function of x:
e B e e T )
ey
Figure 9-12 shows this general definition graphically, Note that Figure 9-12 Is
virtually identical to Figure 9-11 except that xs replace the 2s in Figure 9-11

and that the moving point in Figure 9-12 slides down toward any old point
(x1 f{x}) instead of toward the point (2, f (2):].

i~

0 {x+ h, flx+ h))

fix+ h) - Fix)

Now work out this limit and get the derivative for the parabola f (x) = x*

129
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F (x) :}iffﬁf{x-l-hf)r_ Fx)
+ R z
= lim-—{x pR)i ()
fo=- 0 h
(x*+ 2xh + h‘] -x*
SimEe——e—
o0 1

_ jy 2T+ 1
hoa h
S h(2x+ h)
=0 h

=P!1h\mn(2.r+h)

=2x+0
=2x
Thus for this parabola, the derivative, that's the slope of the tangent line,

equals 2x. Plug any number into x, and you get the slope of the parabola at
that x-value! Try it.

Average Rate and Instantaneous Rate

Returning once agﬂi;l to the connection between slopes and rates, a slope is
just the visual depiction of a rate: the slope, %1 just tells you the rate at
which y changes compared to x. If, for example, y Is the number of miles and
X is the number of hours, you get the familiar rate of miles per hour.

Each secant line in Figures 99 and 9-10 has a slope given by the formula i::il
That slope is the average rate over the interval from x to x. If y is in miles and
X is in hours, you get the average speed in miles per hour during the time
interval from x to x=

When you take the limit and get the slope of the tangent line, you get the
instantaneous rate at the point ( x,,y). Again, if y is in miles and x is in hours,
you get the instantaneous speed at the point in time, x.. Because the slope of the
tangent line is the derivative, this gives us another definition of the derivative.

The derivative of a function f (x) at some x-value is the instantaneous rate of
change of fwith respect to x at that value,
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To Be or Not to Be? Three Cases Where
the Derivative Does Not Exist

I want to discuss the three situations where a derivative fails to exist, By now
you certainly know that the derivative of a function at a given point is the
slope of the tangent line at that point. So, if you can’t draw a tangent line,
there’s no derivative — that happens in the first two cases. In the third case,
there's a tangent line but its slope and the derivative are undefined.

Il »~ There's no tangent line and thus no derivative at any type of discontinu-
fi ity: infinite, removable, or jump. (These types of discontinuity are dis-

| cussed and illustrated in Chapter 7.) Continuity is, therefore, a necessary
] condition for differentiability. It's not, however, a sufficient condition as

|| the next two cases show. Dig that logician-speak.

||+ There’s no tangent line and thus no derivative at a cusp on a function.
[ Seefunction fin Figure 9-13,
r'! = Where a function has a vertical inflection point, the slope is undefined

| and thus the derivative fails to exist. See function g in Figure 9-13.
¢ (Inflection points are explained in Chapter 11.)

o
b5 |

¥ ¥ - gl

Cusp fix)

Vertical

- Jlrr_},,tangrnntlin@
ST
Figure 9-13; : =X e = X
Cases |l and /

Il where
there's no
derivative,

TS T i A/ r







In This Chapter

Chapter 10

Differentiation Rules —
Yeah, Man, It Rules

Learning the rules whether you like it or not — sorry buddy, but those are the rules

I Mastering the basic differentiation rules

b Graduating to expert rules

- Figuring out implicit differentiation

Using logarithms in differentiation

Differentiating inverse functions

Finding second and third derivatives

‘ hapter 9 gives you the basic idea of what a derivative is — it's just a rate
like speed and it's simply the slope of a function. It's important that you
have a solid, intuitive grasp of these fundamental ideas.

You also now know the mathematical foundation of the derivative and its
technical definition involving the limit of the difference quotient. Now, I'm
going to be forever banned from the Royal Order of Pythagoras for saying
this, but, to be perfectly candid, you can basically forget that limit stuff —
except that you need to know it for your final — because in this chapter [ give
you shorteut techniques for finding derivatives that avoid the difficulties of
limits and the difference quotient.

Some of this material is unavoidably dry. If you have trouble staying awake
while slogging through these rules, look back to the last chapter and take a
peek at the next two chapters to see why you should care about mastering
these differentiation rules. Countless problems in business, economics, medi-
cine, engineering, and physics, as well as other disciplines, deal with how fast
a function is rising or falling, and that's what a derivative tells us. It's often
important to know where a function is rising or falling the fastest (the largest
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and smallest slopes) and where its peaks and valleys are (where the slope is
zero). Before you can do these interesting problems, you've got to learn how
to find derivatives, If Chapters 11 and 12 are like playing the piano, then this
chapter is like learning your scales — it's dull, but you've got to do it. You
may want to order up a latte with an extra shot.

Basic Differentiation Rules

Calculus can be difficult, but you'd never know it judging by this section
alone. Learning these first half dozen or so rules is a snap. If you get tired of
this easy stuff, however, | promise you plenty of challenges in the following
section.

The constant rule

This is simple. f (x) =5 is a horizontal line with a slope of zero, and thus its
derivative is also zero. So, for any number ¢, i £ (x) = ¢, then f'(x) = 0. Or you

can write (fv ¢ = 0. End of story.

The power rule

Say f (x)=x". To [ind its derivative, take the power, 5, bring it in front of the x,
and then reduce the power by 1 (in this example, the power becomes a 4).
That gives you f'{x) = bx". To repeat, bring the power in front, then reduce
the power by 1. That's all there is to it.

In Chapter 9, I differentiated y = x* with the difference quotient:

2

y=x

R & o 1) R
y_:!”.l}- h
a2 ¥ -] 2
e X 2xhh =X
=1i
im 7

e I:"_n th | hg
] h

=lim 2x+ h
- U

=2x
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That takes some doing. Instead of all that, just use the power rule: Bring the
2 in front, reduce the power by 1, which leaves you with a power of 1 that you
can drop (because a power of 1 does nothing). Thus,

y=x'
y=2x

You may be wondering, “So why didn't you just tell me that in the first
place?” Well, admittedly, it would have saved some time, especially consider-
ing the fact that once you know the shortcut methads, you'll never use the
difference quotient again — except for your final exam, But the difference
quotient is included in every calculus book and course because it gives you
a fuller, richer understanding of the calculus and its foundations — think of
it as a mathematical character builder. Or because math teachers are sadists.
You be the judge.

The power rule works for any power: a positive, a negative, or a fraction.
Iff(x)=x"then f'(x)==2x"

fg(x)=x" then g'(x)= %x %
o fh(x)=xthen i (x)=1
o
& 2 Make sure you remember how to do the last function. It's the simplest func-
‘ tion, yet the easiest problem to miss.

The best way to understand this last derivative is to realize that fi{x)=xisa
line that fits the form y = mx + b because h (x) = x is the same as hix)=1x+0
(or y= 1x +()). Because the slope of this line is 1, the derivative equals 1. Or
you can just memorize that the derivative of x is 1. But if you forget both of
these ideas, you can always use the power rule. Rewrite h (x)=xash(x)=x'
then apply the rule: Bring the 1 in front and reduce the power by 1 to zero,
giving you i (x) = 1x". Because x’ equals 1, you've got ' (x) = 1.

F You can differentiate radical functions by rewriting them as power functions
and then using the power rule. For example, if £ (x) = ¥/ x?, rewrite it as
f(x)=x/ and use the power rule. You can also use the power rule to differen-
tiate functions like f { x) = % Rewrite this as f (x) = x * and use the power rule.

The constant multiple rule

What if the function you're differentiating begins with a coefficient? Makes no
difference. A coefficient has no effect on the process of differentiation. You
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just ignore it and differentiate according to the appropriate rule. The coeffi-
cient stays where it is until the final step when you simplify your answer by
multiplying by the coefficient.

Differentiate y = 4x*,

Solution: You know by the power rule that the derivative of x* is 3x* so the
derivative of 4 (x*) is 4(3x"). The 4 just sits there doing nothing. Then, as a
final step, you simplify: 4 ('ix") equals 12x%, So y'= 12x°,

Differentiate y = 5x.

Solution; This is a line of the form y = mx + b with m = 5, so the slope is 5 and
thus the derivative is 5: y'= 5. (It's important to think graphically like this
from time to time.) But you can also solve the problem with the power rule,
4= 1x'=1;s0 L 5(x)=5(1) =5.

In a nutshell, the constant multiple rule takes a function like f (x) = 10 (sfuff),
differentiates the stuff — that's stuff’ — while the 10 just stays put. So, if
g (x) = 15(stuff), then g'(x) = 15(stuff").

One final example: Differentiate y = Sxf‘:’

Solution: The coefficient hereui So, bec&usc d -—x/ (by the power

ru]c),%%[:x}/-) 4(5x /)—% x .

Don't forget that 7 (-3.14) and e (~2.72) are numbers, not variables, so they
behave like ordinary numbers. Constants in problems, like ¢ and k also
behave like ordinary numbers. (By the way, the number e, named for the
great mathematician Leonhard Euler, is perhaps the most important number
in all of mathematics, but 1 don't get into that here.)

Thus, if y = 71x, y'= T — this works exactly like differentiating y = 5x. And
because 7" is just a number, if y = #* then y'= 0 — this works exactly like dif-
ferentiating y = 10. You'll also see problems containing constants like c and k.
Be sure to treat them like regular numbers. For example, the derivative of
y=5x+ 2k" (where k is a constant) is 5, not 5 + 6k°,

The sum rule — hey, that's
some rule you got there

When you want the derivative of a sum of terms, take the derivative of each
term separately.
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What's £ (x )i £ (x) =x"+x"+ x*+ x+ 107

Solution: Just use the power rule for each of the first four terms and the A
constant rule for the final term. Thus, £'(x) = 6x®+ 3x*+ 2x + 1,

The difference rule —
it makes no difference

If you've got a difference (that's subtraction) instead of a sum, it makes
no difference. You still differentiate each term separately. Thus, if
¥=3x"—x"~ 2x*+ 6x* + 5x, then y'= 15x" - dx*— 6x?+ 12x¢ + 5. The addition
and subtraction signs are unaffected by the differentiation.

Differentiating trig functions

Ladies and Gentlemen: | have the high honor and distinct privilege of intro-
ducing you to the derivatives of the six trig functions,

(-f;sinxrcosx %csux——cscxmtr
_d_ & 3 — ¥ i ™ - .

dx COSY = —8inx iy secx =secxtanx
d—‘itanx:sech %cot.\':—csc’x

Make sure you memorize the first two — they're a snap — I've never known
anyone to forget them. If you're good at rote memorization, memorize the last
four as well. Alternatively, if you're not wild about memorization or are afraid
that this knowledge will crowd out the date of the Battle of Hastings (1066) —
which is much more likely to come up in a board game than trig derivatives —
you can figure out the last four derivatives from scratch by using the quotient
rule (see section “The quotient rule” later on).

Or you might enjoy the following mnemonic trick for these last four trig deriv-
atives. lmagine you're taking a test and can’t remember these derivatives,
You lean over to the guy next to you and whisper, “psst, hey what's the deriy-
ative of cscx?” Now, take the last three letters of psst (sst) — those are the
initial letters of sec, sec, tan. Write these three down, and below them write
their cofunctions: csc, esc, cot. Put a negative sign on the csc in the middle.
Finally, add arrows like in the diagram below.

SeC — sec «— tan
CSC — —CSC  cot
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2 = ki iy
Figure 10-1:
The graph of
y=a"
RS

Take my word for it, you'll remember the word psst, and after that the diagram
is very easy to remember. Look at the top row. The sec on the left has an arrow
pointing to sec tan — so Lthe derivative of secx is secx tanx. The tan on the
right has an arrow pointing to sec sec, so the derivative of tanx is sec® x. The
bottom row works the same way except that both derivatives are negative.

Differentiating exponential
and logarithmic functions

Caution: memorization ahead. Oh joy, unalloyed happiness, manna from
heaven. ..

Exponential functions
If you can't memorize the next rule, hang up your calculator.

d

_{'f:; cl

dx

That's right — break out the smelling salts — the derivative of e” is itself! This
is a special function. e* and its multiples, like 5¢*, are the only functions that
are their own derivatives. Think about what this means. Look at the graph of
¥=e"in Figure 10-1.

y
11
10
ol
8
71 (2, ~7.4)
B slope =7.4
51
4
3
2
———inpT
t b TR + + ] X
15 1 05 0.5 1 15 2 25
Y
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Pick any point on this function, say (2, ~7.4) and the height of the function
at that point, ~7.4, is the same as the slope at that point.

If the base is a number other than e, you have to tweak the derivative by
multiplying it by the natural log of the base:

If y=2" then y'= 2" In2,
If y=107% then y'= 10" 1In10.

Logarithmic functions

And now — what you've all been waiting for — the derivatives of logarithmic
functions. (See Chapter 4 if you want to brush up on logs.) Here's the deriva-
tive of the natural log — that’s the log with base e:

Yl
dxlnx--x

If the log base is a number other than e, you tweak this derivative — like with
exponential functions — except that you divide by the natural log of the base
instead of multiplying. Thus,

1
d 1082 = n2 = Xz &nd

ng logx = Tl]llﬁ (Recall that log, x is written without the 10.)

D:Zferentiation Rules for Experts —
0h, Yeah, I'm a Calculus Wonk

Now that you've totally mastered all the basic rules, take a breather and rest
on your laurels for a minute. . . . Okay, ready for a challenge? The following
rules, especially the chain rule, can be tough. But you know what they say:
“No guts, no glory,” “No pain, no gain,” yada, yada, yada.

The product rule

You use this rule for — hold on to your hat — the product of two functions
like

y=x"-sinx
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The Product Rule:

If y = this - that,
then y'= this" that+ this - that’.
So, for y=x*- sinx,
y'= (x“)'- sinx+x" (sinx)’

=3x"sinx +x"cosx

The quotient rule

1 have a feeling that you can guess what this rule is for — the quotient of two
functions like

i
=Sl

The Quotient Rule:

_ top
Ity= bottom'

e top" bottom - top - bottont
Y bottom® ;

Just about every calculus book I've ever seen gives this rule in a slightly dif-
ferent form that'’s harder to remember. And some books give a “mnemonic”
involving the words lodeehi and hideelo or hodeehi and hideeho, which is
very easy to get mixed up — great, thanks a lot.

Memorize the guotient rule the way I've written it. You'll have no problem
remembering what goes In the denominator — no one ever forgets it. The
trick is knowing the order of the terms in the numerator. Think of it like this.
You're doing a derivative, so the first thing you do is to take a derivative.
And is it more natural to begin at the top or the bottom of a fraction? The top,
of course. So the quotient rule hegins with the derivative of the top. If you
remember that, the rest of the numerator is almost automatic. Focus on these
points and you'll remember the quotient rule ten years from now — oh, sure.

S0 here's the derivative of y = w:
x
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. (sinx)"- x'—sinx- (x*)’

(x*)

_ x'cosx—4x'sinx
- =

X’ (xcosx — 4sinx)
= o

- Xcosx—4sinx
x.‘.-

In the “Differentiating trig functions” section, I promised to show you how to
find the derivatives of four trig functions — tangent, cofangent, secani, and
cosecant — with the quotient rule. I'm a man of my word, so here goes. All
four of these functions can be written in terms of sine and cosine — right?
(See Chapter 6.) For instance, tanx = Siay. Now, if you want the derivative
of tanx, you can use the quotient rule:

_ Sinx
lanx = TOsSY

() (sinx)'cosx - sinx(cosx)’
cos’ x
_ COSXx - cosx—sinx: (—sinx)
cos’x

_ cos” x+sin’x

(:{_}Szx
= {miz = (The Pythagorean identity tells you that
: cos’x+ sin” x = 1. See the Cheat Sheet for
=sec’y this and other handy trig identities.)

Granted, this is quite a bit of work compared to just memorizing the answer
or using the mnemonic device presented several pages back, but it's nice to
know that you can get the answer this way as a last resort. The other three
functions are no harder. Give them a try.

The chain rule

The chain rule is by far the trickiest derivative rule, but it's not really that
bad if you carefully focus on a few important points. Begin by differentiating
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y= .,f 4x” - 5. You use the chain rule here because you've got one function
(4x” - 5) inside another function (the square root function) — in other words,
it's a composite function.

F By the way, here’s one way to quickly recognize a composite function. y= /x
is not a composite function because the argument of the square root — that's
the thing you take the square root of — is simply x. Whenever the argument
of a function is anything other than a plain old x, you've got a composite
function. Be careful to distinguish a composite function from something like
y=/x sinx, which is the product of two functions, /x and sin x, each of
which does have just a plain old x as its argument.

Okay, so you've got this composite function, y = J4x" -5, Here's how to differ-
entiate it with the chain rule.

1. You start with the oufside function, /_ , and differentiate that, IGNOR-
ING what's inside. To make sure you ignore the inside, temporarily
replace the Inside function with the word stuff.

So you've got y= J stuff. Okay, now differentiate y = J/ stuff the same
way you'd differentiate y = .,f}. Because y = .,/J_r is the same as y = x5,
the power rule gives you y'= 5 x4, So for this problem, you begin with
% stuff 7,

2. Multiply the result from Step 1 by the derivative of the inside
function, stuiff".

y'= % stuff Vs - stuff’

Take a good look at this. All basic chain rule problems follow this format.
You do the derivative rule for the outside function, ignoring the inside
stuff, then multiply that by the derivative of the stuff.

3. Differentiate the inside stuff.

The inside stuff in this problem is 4x” - 5 and its derivative Is 12x* by the
power rule.

4, Now put the real stuff and its derivative back where they belong.

y=4(a'=5) % 12¢)

5. Simplify.
y'=6x* (4x*~ 5) 7+
k]
Or, if you've got something against negative powers, y'= E‘xu_,—,--.
(4x*-5)"

2

Or, if you've got something against fraction powers, y'= S
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Let's try differentiating another composite function: y= sin[xE }

1. The outside function is the sine function, so you start there, taking the
derivative of sine and ignoring the inside stuff, x°. The derivative of
sinx is cosx, so for this problem, you begin with

cos( stuff)

2. Multiply the derivative of the outside function by the derivative of
the stuff.

y'= cos(stuff) - stuff’

3. The stuff in this problem is x’, so stuff’ is Zx. When you plug these
terms back in, you get

Y= (‘.ns{xz] - 2x
= 2xcos(x*)

Sometimes figuring out which function is inside which can be a bit tricky —
especially when a function Is inside another and then both of them are inside
a third function (you can have four or more nested functions, but three is
probably the most you'll see). Here'’s a tip.

Rewrite the composite function with a set of parentheses for each inside
function, and rewrite trig functions like sin® x with the power outside a set
of parentheses: (sinx)*

For example — this is a tough one, gird your loins — differentiate :
y =sin®(5x’ - 4x). First, rewrite the cubed sine function: y = (tsin Sx?— 4x ) ;
Now it’s easy to see the order in which the functions are nested. The innef-
most function is inside the innermost parentheses — that’s 5x* - 4x. Next, the
sine function is inside the next set of parentheses — that's sin ( stuff). Last,
the cubing function is on the outside of everything — that's stuff’. (Because
I'm a math teacher, I'm honor bound to point out that the stuffin stuff* is dif-
ferent from the stuff in sin( stuff). It's quite unmathematical of me to use the
same term to refer to different things, but don’t sweat it — I'm just using the
term stuff to refer to whatever is inside any function. The technical term for
this stuffis the argument of the function.) Okay, now that you know the order
of the functions, you can differentiate from oufside in,

1. The outermost function is stuff* and its derivative is given by the
power rule,

3stuff?

2. As with all chain rule problems, you multiply that by stufr".
3stulf* - stuff

3. Now put the stuff, sin(5x* -~ 4x ), back where it belongs.

3{5[1‘1(5)(2— 4x))? (sin(."ixz- 4x))
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4. Use the chain rule again.

You can’t finish this problem quickly by just taking a simple derivative
because you have to differentiate another composite function,

sin(5x* = 4x ). Just treat sin(5x*~ 4x ) as if it were the original problem
and take its derivative. The derivative of sin x is cos x, so the derivative
of sin( stuff) begins with cos ( stuff). Multiply that by stuff’. Thus, the
derivative of sin(stuff) is

cos(stuff) - stuff

5. The stuff is 5x* - 4x and its derivative is 10x - 4. Plug those things
back in.

cos(Bx*~ dx ) (10x - 4)

6. Now that you've got the derivative of sin (5.1:’ —4x }, plug this result
into the result from Step 3, giving you the whole enchilada.

3(sin (5x*~ 4x)) - cos (57~ 4x) - (10x - 4)
7. This can be simplified a bit,
(30x — Iz}sin:"(ﬁx’*—*lx}cus(sz— 4x)

[ told you it was a tough one.

It may have occurred to you that you can save some time by not switching to
the word stuff and then switching back. That’s true, but the technique forces
vou to leave the stuff alone during each step of a problem. That's the critical
point.

Make sure you DO NOT TOUCH THE STUFF

As long as you remember this, you don't need to actually use the word stuff
when doing a chain rule problem. You've just got to be sure you don’t change
an inside function while differentiating an outside function. Say you want to
differentiate f(x)=In (x‘q). The argument of this natural logarithm function is
x*. Don’t touch it during the first step of the solution, which is to use the
natural log rule: T—:‘JE Inx = % This rule tells you to put the argument of the
function in the denominator under the number 1. So, alter the first step in dif-
ferentiating In {;rc'1 ], you've got %1- You then finish the problem by multiplying
that by the derivative of x” which is 3x*

Another way to make sure you've got the chain rule straight is to remember
that you never use more than one derivative rule at a time.
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In the previous example, In (x" ) you first use the natural log rule, then, as a
separate step, you use the power rule to differentiate x*, At no point in any
chain rule problem do you use both rules at the same time and write some-

thing like st

[fy=F(g(x))
then y'=/"(g(x))-g'(x).

Or, equivalently,
fy="F(u)

andu=g(x),

dy_dy du
then 52 =4 dx

Here's the chain rule mumbo jumbo,

The Chain Rule (for differentiating a composite function):

(notice how the dus cancel).

See the nearby sidebar, “Why the chain rule works,"” for a plain-English expla-

nation of this mumbo jumbo.

Why the chain rule works

You wouldn't know it fram the difficult math in
this section or the fancy chain rule mumbo
jumbo, but the chain rule is based on a very
simple idea. Say one person is walking, another
jogging, and a third is riding a bike. If the jogger
goes twice as fast as the walker, and the biker
goes four times as fast as the jogger, then the
biker goes 2 times 4, or 8 times as fast as the
walker, right? That's the chain rule in a nutshell —
you just multiply the ralative rates.

Remember Figure 9-5 showing Laurel and Hardy
on a teeter-totter? Recall that for every inch
Hardy goes down, Laurel goes up 2 inches. So,
Laurel’s rate of movement is twice Hardy's rate,
and therefore d—ﬁ = 2. Now imagine that Laurel
has one of those party favors in his mouth — the
kind that unrolls as you blowinto it, and that for
everyinch he goes up, he blows the noisemaker

out3inches. The rate of movement of the noise-
maker {V} is thus 3 times Laurel's rate of move-
ment. In calculus symbols, = 9- 50, how fast
is the noisemaker moving compared to Hardy?
This is just comman sense. The noisemaker is
moving 3 times as fast as Laurel, and Laurel is
moving 2 times as fast as Hardy, so the noise-
maker is moving 3 times 2, or 6 times as fast as
Hardy. Here it is in symbols (note that this is the
same as the formal definition of the chain rule
next to the Mumbo Jumbo icon):
dN _dN dl
dH — dl aH
=32
=6
Mere child's play.
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One final example and one last tip. Differentiate 4x*sin( x* } This problem has
a new twist — it involves the chain rule and the product rule, How should
you begin?

If you're not sure where to begdin differentiating a complex expression, imagine
plugging a number into x and then evaluating the expression on your calcula-
tor one step at a lime. Your last computation tells you the first thing to do.

Say you plug the number 5 into the xs in 4x”sin x"l. You evaluate 4 - 5° —
that's 100; then, after getting 5" = 125, you do sin(125), which is about - 0.616.
Finally, you multiply 100 by ~0.616. Because your /ast computation is multipli-
cafion, your first step in differentiating is to use the product rule, (Had your
last computation been instead something like sin(125), then you'd begin with
the chain rule.) Remember the product rule?

If F{x)=this- that, then £ { x ) = this" that+ this- that’

Sofor f(x)= 4x"'sln{x"}.

e (ixz]r(sin(xﬂ)) + [&“)(sin(x’))

Now you finish the problem by taking the derivative of 4x* with the power
rule and the derivative of sin ().:r*} with the chain rule:
{x)= {:Hx}(sin(x“}} + (f-lxz}(('.-:m(x") . :ixi)
And now simplity:
f'(x) = Bsin(x* ) + l?x*cns(lx“}

Differentiating Implicitly

All the differentiation problems presented in previous sections of this chap-
ter are functions like y = x*+ 5x or y = sinx (and y was sometimes written as
f(x)asin f(x)=x"~4x%. In such cases, y is written explicitly as a function of
x. This means that the equation is solved for y; in other words, y is by itself
on one side of the equation.

Sometimes, however, you are asked to differentiate an equation that's not
solved for y, like y®+ 3x*= sinx — dy*, This equation defines y implicitly as a
function of x, and you can’t write it as an explicit function because it can't be
solved for y. For such a problem, you need implicit differentiation. When dif-
ferentiating implicitly, all the derivative rules work the same with one excep-
tion: when you differentiate a term with a ¥ in it, you use the chain rule with
a little twist, i
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Remember using the chain rule to differentiate something like sin(x*) with
the stuff technique? The derivative of sine is cosine, so the derivative of
sin(stuff) is cos(stuff) - stuff’. You finish the problem by finding the deriva-
tive of the stuff, x*, which is 3x* and then making the substitutions to dive you
cos(x") 3x", With implicit differentiation, a y works just like the word stuff
Thus, because

(sln ( stuff) )— cos ( stuff) - stuff,
{siny)’: cosy -y’

The twist is that while the word stuffis temporarily taking the place of some
function of x (x” in this example), you don’t know what the ¥ equals in terms
of x. 5o the y and the y’— unlike the sfuff and the stuff— remain in the final
answer. But the concept is exactly the same, and you can think of y as being
equal to some unknown, mystery function of x. But because you don't know
what the function is, you can’t make the switch back to xs at the end of the
problem like you can with a regular chain rule problem.

[ suppose you're wondering whether I'm ever going Lo get around Lo actually
doing the problem. Here goes. Again, differentiate y*+ 3x*= sinx - 4y”,
1. Differentiate each term on both sides of the equation.
Sy' y'+ 6x = cosx~ 12y*. y'

For the first and fourth terms, you use the power rule and the chain rule,
For the second term, you use the regular power rule. And for the third
term, you use the regular trig rule,

2. Collect all terms containing a y’ on the left side of the equation and all
other terms on the right side.

Sytoy'+ 12y% y'= cosx — Gix
3. Factor out y'.

¥ (5y"+ 12y%) = cosx — x
4. Divide for the final answer.

i Cosx —6x
7" By 12y

Note that this derivative, unlike the others you've done so far, is expressed in
terms of x and y instead of just x. So, if you want evaluate the derivative to
get the slope at a particular point, you need to have values for both x and ¥
to plug into the derivative,
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Also note that in many textbooks, the symbol % is used instead of ¥' in
every step of solutions li}te the one above.  find y' easier and less cumber-
some to work with. But 2 does have the advantage of reminding you that
you're [inding the derivative of y with respect to x. Either ;.vay is fine. Take
your pick.

Getting into the Rhythm with
Logavithmic Differentiation

Say you want to differentiate f(x) = (x* - 5)(3x' + 10)(4x* - 1)(2x* - 5x* + 10) .
Now, you could multiply the whole thing out and then differentiate, but that
would be a huge pain. Or you could use the product rule a few times, but that
would also be too tedious and time-consuming. The hetter way is to use loga-
rithmic differentiation.

1. Take the natural log of both sides.
Inf (x) =1n((x“—5){3x*+ 10) (4x?— 1) (2x* - 5+ m})

2. Now use the property for the log of a product, which you remember
of course (if not, see Chapter 4).

Inf(x)=In(x"- 5:] +In(3x"+ 10} + ln{4x?'— l) + ]n(zx"— Bx + 1{))
3. Differentiate both sides.

);.,r:cording to the chain rule, the derivative of Inf ( x) is Lx -f'(x),or
X

?‘((_l:_)_ . (The f { x) works just like the word stuff in a regular chain rule

problem or a ¥ in an implicit differentiation problem.) For each of the
four terms on the right side of the equation, you use the chain rule.

R(G) e A ] e e S o IO (1265 (0
F(x) -5  @x'+10)  (e-1)  @x°-5x*+ 10)
4. Multiply both sides by f (x) and you're done.
o) o |3 12x* 8 . 10x‘-10x |
P G=n @+ T @ -1 ' @ -5+ 10)
(e’ ~ 5)(3x" + 10) (4x" ~ 1)(2x° ~ 5x* + 10)

Granted, this answer is pretty hairy, and the solution process isn't exactly
a walk in the park, but, take my word for it, this method is much easier than
the other allernatives.
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Differentiating Inverse Functions

There’s a difficult-looking formula involving the derivatives of inverse func-
tions, but before we get to it, look at Figure 10-2, which nicely sums up the
whole idea.

10
9.
a.
7
B
5.
4..
3.
Ll i s i
Figure 10-2 st
The graphs [tese
of inverse B rCER U S
functions, » -1.- /2 T T R
fix and glx). "]
[ Lo e e

Figure 10-2 shows a pair of inverse functions, fand 4. Recall that inverse
functions are symmetrical with respect to the line, ¥=x. As with any pair
of inverse functions, if the point (10,4 }is on one function, (4,10)is on its
inverse. And, because of the symmetry of the graphs, you can see that the
slopes at those points are reciprocals; At (10,4) the slope is % and at (4,10)
the slope is #. That's how the idea works graphically, and if you're with me
so far, you've got it down at least visually.

The algebraic explanation is a bit trickier, however. The point (10,4)on r

can be written as { 10, F [1(}})F and the slope at this point — and thus the
derivative — can be expressed as ' (10). The point (4,10) on g can be written
as (4, g(4)). Then, because £ (10) = 4, you can replace the 4s in (4, g (4)) with
f(10) s, giving you (f (10), g (f {ll))}). The slope and derivative at this point
can be expressed as g' (.-‘ ( 10)). These slopes are reciprocals, so that gives
you the equation

e I
(Y, g'(£(10))
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This difficult equation expresses nothing more and nothing less than the two
triangles on the two functions in Figure 10-2.

Using x instead of 10 gives you the general formula:

e
g'(f(x))

In words, this formula says that the derivative of a function, f, with respect
to x, is the reciprocal of the derivative of its inverse with respect to £,

f(x)=

Okay, so maybe it was a lot trickier.

Scaling the Heights of Higher
Order Derivatives

Finding a second, third, fourth, or higher derivative is incredibly simple. The
second derivalive of a function is just the derivative of its [irst derivative. The
third derivative is the derivative of the second derivative, the fourth deriva-
tive is the derivative of the third, and so on. For example, here's a function
and its first, second, third, and subsequent derivatives. In this example, all
the derivatives are obtained by the power rule,
fO)=x'-5x"+12x-3
) =4x"- 10x+ 12
£ =12x - 10
() = 24x
F90x) =24
Pe)=0
l.('H.i] (x) — 0
etc.=0
etc. =)

All polynomial functions like this one Evcntually go to zero when you differen-

tiate repeatedly. Rational functions like f(x) = X i g; , on the other hand, get
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messier and messier as you take higher and higher derivatives. And the
higher derivatives of sine and cosine are cyclical. For example,

¥y=sinx
y'=cosx
y'=—sinx
¥ =—Cosx
y@=sinx

The cycle repeats indefinitely with every multiple of four.

In Chapters 11 and 12, I show you several uses of higher derivatives — mainly
second derivatives. (Here's a sneak preview: The first derivative of position is
velocity, and the second derivative of position is acceleration.) But for now,
let me give you just one of the main ideas in a nutshell. A first derivative, as
you know, tells you how fast a function is changing — how fast it's going up
or down — that's its slope. A second derivative tells you how fast the first
derivative is changing — or, in other words, how fast the slope is changing.

A third derivative tells you how fast the second derivative is changing, which
tells you how fast the rate of change of the slope is changing. If you're getting
a bit lost here, don't worry about it — I'm getting lost myself. It gets increas-
ingly difficult to get a handle on what higher derivatives tell you as you go
past the second derivative, because you start getting into a rate of change

of a rate of change of a rate of change, and so on.

151
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Chapter 11

Difterentiation and
the Shape of Curves
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In This Chapter

I Weathering the ups and downs of moody functions
= Locating extrema

b= Using the first and second derivative tests

b= Interpreting concavity and points of inflection
» Comparing the graphs of functions and derivatives
b Muzzling the mean value theorem — GRRRRR
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f you've read Chapters 9 and 10, you're probably an expert at finding deriv-

atives, Which is a good thing, because in this chapter you use derivatives
to understand the shape of functions — where they rise, where they fall,
where they max out and bottom out, how they curve, and so on. Then in
Chapter 12, you use your knowledge about the shape of functions to solve
real-world problems.

Taking a Calculus Road Trip

Consider the graph of £(x) in Figure 11-1.

Imagine that you're driving along this function from left to right. Along your
drive, there are several points of interest between a and /. All of them, except
for the start and finish points, relate to the steepness of the road — in other
words, its slope or derivative.

Now, prepare yourself — I'm going to throw lots of new terms and definitions
at you all at once here. You shouldn’t, however, have much trouble with these
ideas because they mostly involve common sense notions like driving up or
down an incline, or going over the crest of a hill.
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Figure 11-1:
The graph of
f () with
several
points of
interest.
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Climb every mountain, ford every stream:
Positive and negative slopes

First, notice that as you begin your trip at a, you're climbing up. Thus the
function is increasing and its slope and derivative are therefore positive.
You climb the hill till you reach the top at b where the road levels out.
The road is level, so the slope and derivative equal zero.

Because the derivative is zero at b, point b is called a stationary point of the func-
tion. Point b is also a local maximunt or relative maximum of f because it's the
top of a hill. To be a local max, b just has to be the highest point in its immediate
neighborhood. It doesn't matter that the nearby hill at g is even higher.

After reaching the crest of the hill at b, you start going down — well, duh, So,
alter b, the slope and derivative are negative and the function is decreasing.
To the left of every local max, the slope is positive; to the right of a max, the
slope is negative.

1 can’t think of a travel metaphor for this
section: Concavity and inflection points

The next point of interest is ¢. Can you see that as you go down from b to ¢,
the road gets steeper and steeper, but that after ¢, although you're still going
down, the road is gradually starting to curve up again and get less steep? The
little down arrow between b and c¢ in Figure 11-1 indicates that this section of
the road is curving down — the function is said to be concave down there.

As you can see, the road is also concave down between a and b.
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A portion of a function that's concave down looks like a frown. Where it's con-
cave up, like between ¢ and ¢, it looks like a cup. Get it? — they rhyme.

Wherever a function is concave down, its derivative is decreasing; wherever a
function is concave up, its derivative is increasing.

So the road is concave down until ¢ where it switches to concave up. Because
the concavity switches at ¢, it's a point of inflection. The point ¢ is also the
steepest point on this stretch of the road. The steepest points on a function —
as well as the least steep points — always occur at inflection points.

Be careful with function sections that have a negative slope. Point ¢ is the
steepest point in its neighborhood because it has a bigger negative slope
than any other nearby point. But remember, a big negative number is actually
a small number, so the slope and derivative at ¢ are actually the smallest of all
the points in the neighborhood. From & to ¢ the derivative of the function is
decreasing (because it's becoming a bigger negative). From c to d, the deriva-
tive is increasing (because it's becoming a smaller negative).

This vale of tears: A local minimum

Let’s get back to your drive. Aflter point ¢, you keep going down till you reach d,
the bottom of a valley. Point d is another stationary point because the road is
level there and the derivative is zero. Point d is also a local or relative minimum
because it's the lowest point in the immediate neighborhood.

A scenic overlook: The absolute maximum

After d, you travel up, passing e, which is another inflection point, It's the
steepest point between d and g and the point where the derivative is greatest.
You stop at the scenic overlook at g another stationary point and another
local max. Point g is also the absolute maximum on the interval from a to !
because it's the very highest point on the road from a to /.

Car trouble: Stuck on the cusp

Going down from g you pass another inflection point, 4, another local min, i,
then you go up to j where you foolishly try to drive over the peak. Your front
wheels make it over, but your car's chassis gets stuck on the precipice, leaving
you teetering up and down with your wheels spinning. Your car teeters at I
because you can't draw a tangent line there, No tangent line means no slope;
and no slope means no derivative, or you can say that the derivative at jis
undefined. A sharp turning point like f is called a cusp.
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It’s all downhill from here

After dislodging your car, you head down, the road getting less and less steep
until it flattens out for an instant at k. (Again, note that because the slope and
the derivative are becoming smaller and smaller negative numbers on the
way to k, they are actually increasing.) Point k is another stationary point
because its derivative is zero. It’s also another inflection point because the
concavity switches from up to down at k. After passing k, you go down to {,
your final destination. Because { is the endpoint of the interval, it's not a local
min — endpoints never qualify as local mins or maxes — but it is the absoliite
minimum on the interval because it’s the very lowest point from a to [,

Hope you enjoyed your trip.

Your travel diary

I want to review your trip and the previous terms and definitions and intro-
duce yet a few more terms:

I+ The function fin Figure 11-1 has a derivative of zero at stationary points b,
d, g i, and R. If you add j to this list — at j the derivative is undefined —
you get the complete list of the critical points of the function, Critical
points are where the derivative is zero or undefined. The x-values of these
i critical points are called the critical numbers of the function.

1~ All local maxes and mins — the peaks and valleys — must occur at criti-
i cal points. However, not all critical points are necessarily local maxes or
i mins. Point &, for instance, is a critical point bul neither a max nor a min.
Local maximums and minimums — or rmaxima and minima — are called,
| collectively, local extrema of the function. Use a lot of these fancy plurals
(i if you want to sound like a professor. A single local max or min is a local
i extremurn.

{ » The function is increasing whenever you're going up — where the deriv-
i ative is positive; it's decreasing whenever you're going down — where

{ the derivative is negative. The function is also decreasing at point &, a
horizontal inflection point, even though the slope and derivative are

[ zerothere. I realize that seems a bit odd, but that's the way it works —
{  take my word for it. At all horizontal inflection points, a function is

|| either increasing or decreasing. At local extrema b, d, g, i, and j, the

| function is neither increasing nor decreasing.

i+~ The function is concave up wherever it looks like a cup or a smile (some
| say where it “holds water™) and concave down wherever it looks like a

i frown (some say where it “spills water™). Inflection points ¢, e, h, and &

||  are where the concavity switches from up to down or vice versa.

Il Inflection points are also the steepest or leasl steep points in their

i immediate neighborhoods.
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Finding Local Extrema — My Ma,
She’s Like, Totally Extreme

Now that you have the preceding section under your belt and know what local
extrema are, you need to know how to do the math to find them. You saw in
the last section that all local extrema occur at critical points of a function —
that's where the derivative is zero or undefined (don't forget, though, that not
all critical points need be local extrema). The first step in finding a function’s
local extrema is to find its critical numbers (the x-values of the critical points).

Cranking out the critical numbers

Find the critical numbers of £ (x) = 3x" - 20x". See Figure 11-2.

¥
S | t X
3 2 -1 1 2 3
_‘m.
-20 1
-30
T -10
Figure 11-2: 50
The graph of 60+
fx)= 20
ax5— 20x°.
I T o]

Here's what you do.

1. Find the first derivative of fusing the power rule.
f(x)=3x"=20x"
£ (x)=15c"- 60x*

157
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Figure 11-3:
The critical
numbers of

flx)=
3x 85— 20x 2
L TR

2. Set the derivative equal to zero and solve for x.
15x"— 60x"= 0
15x*(x* =4 =0
15 (x+2)(x-2)=0
15¢*=0 or x+2=0 or x-2=0
x=0,-2 0or2

These three x-values are critical numbers of £ Additional critical numbers

could exist if the first derivative were undefined at some x-values, but
because the derivative, 15x'— 60x”, is defined for all input values, the above
solution set, 0,2, and 2, is the complete list of critical numbers. Because
the derivative of f equals zero at these three critical numbers, the curve has
horizontal tangents at these numbers,

Now that you've got the list of critical numbers, you need to determine
whether peaks or valleys occur at those x-values. You can do this with either
the First Derivative Test or the Second Derivative Test. | suppose you may be
wondering why you have to test the critical numbers when you can see
where Lhe peaks and valleys are by just looking at the graph in Figure 11-2,
which you can, of course, reproduce on your graphing calculator. Good point.
Okay, so this problem — not to mention countless other problems you've
done in math courses — is somewhat contrived and impractical. So what else
is new?

The First Devivative Test

The First Derivative Test is based on the Nobel-prize-caliber ideas that as you
go over the top of a hill, first you go up and then you go down, and that when
you drive into and out of a valley, you go down and then up. This calculus
stuff is pretly amazing, isn't it?

Here's how you use the test. Take a number line and put down the critical
numbers you found above: 0,-2, and 2. See Figure 11-3.

.— R
-2 0 2
l critical T
numbers
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This number line is now divided into four regions: to the left of -2, from —2 to
0, from 0 to 2, and to the right of 2. Now pick a value from each region, plug it
into the first derivative, and note whether your result is positive or negative.
Let's use the numbers -3, -1, 1, and 3 to test the regions.

F'(x)=15x" = 60x*

f'(—3)=15(-3)"*-60(-3)*
=15-81-60-9
=675

F'(=1)=15(=1)*~ 60(~1)?
=15~ 60
=45

£(1)=15(1)"= 60(1)*
= 15 60
=45

£'(3)=15(3) '~ 60(3)
=15-81-60-9
= 675

By the way, if you had noticed that this first derivative is an even function,
you'd have known, without doing the computation, that £ (1) = £ (- 1) and that
f(3)=/(-3). (Even functions are described in Chapter 5. A polynomial func-
tion with all even powers, like /”(x) above, is one type of even function.)

These four results are, respectively, positive, negative, negative, and posilive,
Now, take your number line, mark each region with the appropriate positive
or negative sign, and indicate where the function is increasing (where the
derivative Is positive) and decreasing (where the derivative is negative).

The result is a so-called sign graph. See Figure 114,

BT —F:—F:-'--l-.'—'-

" " 4 1 - ] = ;
Figure 11-4:  increasing ; decreasing ! decreasing! increasing
1S !

The sign t : i : L
graph for H ; . .
fi(x)i= -2 0 2

: )
g 20 T—t:ritif:al nurrrt:uf;rsJ
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Figure 114 simply tells you what you already know if you've looked at the
graph of f— that the function goes up until =2, down from -2 to 0, further
down from 0 to 2, and up again from 2 on,

Now here’s the rocket science. The function switches from increasing to
decreasing at —2; in other words, you go up to —2 and then down, So at =2 you
have a hill or a local maximum. Conversely, because the function switches
from decreasing to increasing at 2, you have a valley there or a local mini-
mum. And because the signs of the first derivative don’t switch at zero,
there's neither a min nor a max at that x-value,

The last step is to obtain the function values, in other words the heights, of
these two local extrema by plugging the x-values into the original function:

f(x)= 3%~ 20x"

fF(-2)=3(-2)"-20(-2)*
- 64

£(2)=3(2)"-20(2)"
=-64

Thus, the local max is located at (- 2,64) and the local min is at (2, -64).
You're done.

To use the First Derivative Test to test for a local extremum at a particular
critical number, the function must be continuous at that x-value,

The Second Derivative Test —
No, no, anything but another test!

Il you don’t like the First Derivative Test, you can use the Second Derivative
Test to find a function’s local extrema.

The Second Derivative Test is based on two more prize-winning ideas: First,
that at the crest of a hill, a road has a hump shape — in other words, it's
curving down or concave down; and second, that at the bottom of a valley,
aroad is cup-shaped, so it's curving up or concave up.

The concavity of a function at a point is given by its second derivative: a posi-
tive second derivative means the function is concave up, a negalive second
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Figure 11-5;
The graph of
g(x)=2x-

37+ 4,
SRR

derivative means the function is concave down, and a second derivative of
zero Is inconclusive (the function could be concave up, concave down, or
there could be an inflection point there). So, for our function £, all you have
to do is find its second derivative and then plug in the critical numbers you
found — -2, 0, and 2 — and note whether your results are positive, negative,
or zero. To wit —

FGO = 3x° - 20x°
F(x)=15x"-60x* (power rule)
F(x) = 60x" - 120x (power rule)

f(=2) = 60 (-2)* - 120(~2) = — 240
£7(0) = 60(0)' - 120(0) = 0
r'(2) = 60(2)" - 120(2) = 240

At =2, the second derivative is negative (~240). This tells you that fis concave
down where x equals - 2, and therefore thal there’s a local max at —2. The
second derivative is positive (240) where x is 2, so [is concave up and thus
there’s a local min at x = 2, Because the second derivative equals zero at x = 0,
the Second Derivative Test falls — it tells you nothing about the concavity at

X = 0 or whether there's a local min or max there, When this happens, you have
to use the First Derivative Test.

Now go through the first and second derivative tests one more time with another
example. Find the local extrema of g (x) = 2x - 3x”: + 4, (See Figure 11-5.)

101
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1. Find the first derivative of g.
g(x)=2x-3x"+4
g'(x)=2-2x /5 (power rule)
2. Set the derivative equal to zero and solve,
2-2x7/4=0
)
x /=1
(x y,)'lz 1
x=1
Thus 1 is a critical number,

3. Determine whether the first derivative is undefined for any x-values,

2x¢ /s equals;-% . Now, because the cube root of zero is zero, if you plug in
zero to %, you'd hav .%T which is undefined. So the derivative, 2 - 2x /4,
is undefined at x = 0, and thus 0 is another critical number. Now you've
got the complete list of critical numbers of g: 0 and 1.

4, Plot the critical numbers on a number line, and then use the First
Derivative Test to figure out the sign of each region.

You can use -1, (1.5, and 2 as test numbers.
g'(x)=2- 27

g (-1)=1
2 (0.5) = —052
g'(2) = 0.41

Figure 11-6 shows the sign graph.

P - : >

Figure ""B: increasing | decreasing
The sign 1 P -

graph of i i T

-

a(x)=2x- 0 1
ax’s + 4, 1 1
T

—

incraasing

critical numbers

Because the first derivative of g switches from positive to negative at 0,
there's a local max there. And because the first derivative switches from
negative to positive at 1, there's a local min at x = 1.
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5. Plug the critical numbers into g to obtain the function values (the
heights) of these two local extrema,

g(x)=2x-3x" +4

g()y=4
g(1)=3
So, there's a local max at (0, 4) and a local min at (1, 3). You're done,
You could have used the Second Derivative Test instead of the First Derivative

Test in Step 4. First, you need the second derivative of g which is, as you know,
the derivative of its first derivative:

g'(x)=2-27
g'{x:] o %x 2
Now, evaluate the second derivative at 1 (the critical number where g'=0.

g)=2%

Because g’ (1)is positive (%], you know that g is concave up at x = 1 and,
therefore, that there's a local min there. The Second Derivative Test is no

help where Lhe first derivative is undefined (where x = 0), so you've got to
use the First Derivative Test for that critical number,

Finding Absolute Extrema
on a Closed Interval

Every function that's continuous on a closed interval has a maximum value
and a minimum value in that interval — in other words, a highest and lowest
point — though, as you see in the following example, there can be a tie for
the highest or lowest value,

A closed interval like [2, 5] includes the endpoints 2 and 5. An open interval
like (2, 5) excludes the endpoints.

Finding the absolute max and min is a snap. All you do is compute the critical
numbers of the function in the given interval, determine the height of the func-
tion at each critical number, and then figure the height of the function at the
two endpoints of the interval. The greatest of this set of heights is the absolute
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max; and the least, of course, is the absolute min. Here's an example: Find the
absolute max and min of i (x) = cos(2x) — 2sinx in the closed interval l%, 2:‘r|.

1. Find the critical numbers of h in the open interval ( 2 .2 )
(See Chapter 6 if you're a little rusty on trig functions.)
hi(x)=cos(2x) - 2sinx
h(x)=—sin{2x) -2 -2cosx
{chain rule)
0=-2sin(2x) - 2cosx
0 = sin(2x) + cosx (divide both sides by ~2)
0 =2sinxcosx+cosx (trig identity;see Cheat Sheet)
0=cosx(2sinx+1)  (factor out cosx)

cosx=10 or 2s5inx+1=10
3

x =55 2sinx=-1
sinx=—%

in 1lx

T 0T

Thus, the zeros of h’ are H,E. and “R. and because h' is defined for
all input numbers, this is the complete list of eritical numbers.

2. Compute the function values (the heights) at each critical number.

hix)=cos(Zx) - 2sinx

f:(-'?-(:;{-)zcus(Z Tﬂ) 2‘51“('-%?-)
: 0.5

=05-2-(-
=15

h(:;TH)=LU.‘,(2 %) 25]11(37”)
==1=2:(=1)
=1

.’z(lg{)'—c‘m(‘d %)—zhm(%)
=0.5-2-(-0.5) '
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3. Determine the function values at the endpoints of the interval.

h(%) :cos(z : %) - 25111(%)
==1-2-1
=-3

h(2m) = cos(2 27) - 2sin(27)
=1-2-0
=1

So, from Steps 2 and 3, you've found five heights: 1.5, 1, 1.5, -3, and 1.

The largest number in this list, 1.5, is the absolute max; the smallest, -3,
is the absolute min.

The absolute max occurs at two points: (-Z’-1§r 1.5) and (%. 1.5 ) The absolute

min oceurs at one of the endpoints, ( L -3 ) and is thus called an endpoint
exfremum,
Table 11-1 shows the values of h(x) = cos(2x) — 2sinx at the three critical

numbers in the interval from % to 27 and at the interval’s endpoints;
Figure 11-7 shows the graph of h.

Table 11-1 Values of h (x )= cos(2x ) - 2sinx
at the Critical Numbers and Endpoints

for the Interval [ 4, 2::]

hixl | -3 |15 1 [15] 1

2|16 (2]68

A couple observations. First, as you can see in Figure 11-7, the pmnts( iZ 1. 5)
dnd( liz FIk 5) are both local maxima of f, and the point ( .:'gr' 1) is a local mini-
mum of . However, if you want only to find the absolute extrema on a closed
interval, you don’t have to pay any attention to whether critical points are local
maxes, mins, or neither. And thus you don’t have to bother to use the first or
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second derivative tests. All you have to do is determine the heights at the criti-
cal numbers and at the endpoints and then pick the largest and smallest num-
bers from Lhis list. Second, the absolute max and min in the given interval tell
you nothing about how the function behaves outside the interval. Function £,
for instance, might rise higher than 1.5 outside the interval from % 027
(although it doesn't), and it might go lower than —3 (although it never does).

¥
A
3¢ i :
21 | |
e e X
; T nir 3r lrx2w
Figure 11-7: -1 4. 2 6 2 6
The graph of :
h{x)= 21 ! ,
cos(2x) - -3} . !
2sinx v ’ :
Simr et e i)

Finding Absolute Extrema over
a Function’s Entire Domain

A function's absolute max and absolute min over its entire domain are the
single highest and single lowest values of the function anywhere it's defined.
A function can have an absolute max or min or both or neither. For example,
the parabola y = x* has an absolute min at the point (0}, 0) — the bottom of its
cup shape — but no absolute max because it goes up forever to the left and
the right. You could say that its absolute max is infinity if it weren't for the
fact that infinity is not a number and thus it doesn’t qualify as a maximum —
and ditto, of course, for negative infinity as a minimum.

The basic idea is this: Either a function will max out somewhere or it will go
up forever to infinity. And the same idea applies to a min and going down to
negative infinity. [ go through the basic method and then point out a couple
exceptions.

To locate a function's absolute max and min over its domain, just find the
height of the function at each of its critical numbers. You just did this in the
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previous section, except that this time you consider all the critical numbers,
not just those in a given interval. The highest of these values is the absolute
max unless the function rises to positive infinity somewhere, in which case
you say that it has no absolute max. The lowest of these values is the
absolute min, unless the function goes down to negative infinity, in which
case it has no absolute min.

If a function goes up to positive infinity or down to negative infinity, it does so
at its extreme right or left or at a vertical asymptote, So, your last step (after
evaluating all the critical points) is to evaluate limf(x) and lim f(x) — the
so-called end behavior of the function — and the limit of the function as x
approaches each vertical asymptote from the left and from the right. If any of
these limits equals positive infinity, then the function has no absolute max:

if none equals positive infinity, then the absolute max is the function value at
the highest of the critical points. And if any of these limits is negative infinity,
then the function has no absolute min; if none of them equals negative infinity,
then the absolute min is the function value at the lowest of the critical points.

Figure 11-8 shows a couple functions where the above method won't work.,
The function f(x) has no absolute max despite the fact that it doesn't go up
to infinity. Its max isn't 4 because it never gets to 4, and its max can't be any-
thing less than 4, like 3.999, because it gets higher than that, say 3.9999. The
function g(x) has no absolute min despite the fact that it doesn’t go down to
negative infinity. Going left, g(x) crawls along the horizontal asymptote at

y =0, but it never gets as low as zero, so neither zero nor any other number
can be the absolute min.

¥ ¥
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Locating Concavity and Inflection Points

Look back at the function £ (x) = 3x* = 20x* in Figure 11-2. You used the three
critical numbers of f, =2, 0, and 2, to find the function’s local extrema:
(-2,64)and( 2,-64). This section investigates what happens elsewhere

on the function — specifically, where the function is concave up or down
and where the concavity switches (the inflection points).

The process lor [inding concavity and inflection points is analogous Lo using
the First Derivative Test and the sign graph to find local extrema, except
that now you use the second derivative. (See the section “Finding Local
Extrema.”) Here's what you do to find the intervals of concavity and the
inflection points of £ (x)'= 3x" = 20x".

1. Find the second derivative of f.
fx)=3x"-20x°
F'(x)=15x" - 60x* (power rule)
F*(x)=60x"—-120x (power rule)

2. Set the second derivative equal to zero and solve.

B0x = 120c=0

60x (x*~2) =0

60x=10 or x=2=0
x=0 x'=2

3. Determine whether the second derivative is undefined for any x-values.

f(x) = 60x"— 120x is defined for all real numbers, so there are no
other x-values to add to the list from Step 2. Thus, the complete list
is—,/2,0, and /2.

Steps 2 and 3 give you what you could call *second derivative critical
numbers” of fbecause they are analogous to the critical numbers of f
that you find using the first derivative. But, as far as I'm aware, this set
of numbers has no special name. In any event, the important thing to
know is that this list is made up of the zeros of " plus any x-values
where f" is undefined.

4. Plot these numbers on a number line and test the regions with the
second derivative.

Use —2,-1,1, and 2 as test numbers.
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Figure 11-9:
A second
derivative
sign graph
for

f(x)=
3x5 - 20x2

| == e ]

F*(x) = 60x”~ 120

£ (~2) =—240
£7(~1) =60
£ (1) =60

£7(2) =240
Figure 11-9 shows the sign graph.
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A positive sign on this sign graph tells you that the function is concave
up in that interval; negative means concave down. The function has

an inflection point (usually) at any x-value where the signs switch from
positive to negative or vice versa.

Because the signs switch at —/2,0, and /2 and because these three num-
bers are zeros of f*, inflection points occur at these x-values. If, however,
you have a problem where the signs switch at a number where ' is unde-
fined, you have to check one additional thing before concluding that
there’s an inflection point there. An inflection point exists at a given
X-value only if there's a tangent line to the function at that number. This
is the case wherever the first derivative exists or where there's a vertical
tangent.

5. Plug these three x-values into f to obtain the function values of the

three inflection points.
f(x)=3x"-20x"

f(—vfz)x:ss}.ﬁ
F(0)=0

F(/2)=-396

The square root of two equals aboul 1.4, so there are inflection points at
about (- 1.4, 39.6),(0, 0), and about (1.4, —39.6). You're done.
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Figure 11-10 shows f's inflection points as well as its local extrema and its
intervals of concavity.

-

T
Figure 11-10:
Aqgraphof ~*

3x 5~ 20x7
showing

its local
extrema, its
inflection
points, and
its intervals
of concavity.

Looking at Graphs of Derivatives
Till They Derive You Crazy

You can learn a lot about functions and their derivatives by looking at
them side by side and comparing their important features. Travel along
f{x)=3x"-20x" [rom lell to right (see Figure 11-11), pausing to note its
points of interest, and also observing what's happening to the graph of
f'(x) = 15x"— 60x* at the same points.

#ﬂ‘-_f‘_ﬁ{ As you look at the graph of £ in Figure 11-11, or the graph of any other deriva-
& 5.‘,; tive, you may need to slap yourself in the face every minute or so to remind
I/ ‘ > yourself that “This is the derivative I'm looking at, not the function — again,
\. this is not the function.” You've looked at hundreds and hundreds of graphs
B of functions over the years, so when you start looking at graphs of deriva-
tives, you can easily lapse into thinking of them as regular functions.




R
Figure 11-11:
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and its first
derivative,
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=X

(-V2, -60) ¥<——(\2, -60)

You might, for instance, look at an interval that's going up on the graph of a
derivative and mistakenly conclude that the original function must also be
golng up in the same interval, This is an easy mistake to make. You know that
the first derivative is the same thing as slope. So, when you see the graph of
the first derivative going up, you may think, “Oh, the first derivative (the
slope) is going up, and when the slope goes up that’s like going up a hill, so
the original function must be rising.” This sounds reasonable because, loosely
speaking, you can describe the front side of a hill as a slope that’s going up,
increasing. But mathematically speaking, the front side of a hill has a positive
slope, not necessarily an increasing slope. So, where a function is increasing,
the graph of its derivative will be positive, but it might be going up or down.



7 72 Part IV: Differentiation

W

Say you're going up a hill. As you approach the top of the hill, you're still
going up, but, in general, the sfope (the steepness) is going down. It might be
3, then 2, then 1, and then, at the top of the hill, the slope Is zero. 5o the slope
is getting smaller or decreasing, even as you're climbing the hill or increasing.
In such an interval, the graph of the function is increasing, but the graph of its
derivative is decreasing. Got that?

Okay, so beginning on the left, fincreases until the local max at (-2,64), It's
going up, so its slope is posifive, but fis gefting less and less steep so its slope
is decreasing — the slope decreases until it becomes zero at the peak. This
corresponds to the graph of f* (the slope) which is positive (because it's
above the x-axis) but decreasing as it goes down to the point (=2,0).

Now that your mind is slightly less muddled, you're ready [or the [ollowing rules
about how the graph of a function compares to the graph of its derivative:

Il &= An increasing interval on a function corresponds to an interval on the
graph of its derivative that's positive (or zero for one point if the func-
tion has a horizontal inflection point). In other words, a function’s
increasing interval corresponds to a part of the derivative graph that's
above the x-axis (or that touches the axis for a single point in the case
of a horizontal inflection point). See intervals A and F in Figure 11-11.

# A local max on the graph of a function corresponds Lo a zero (or
x-intercept) on an interval of the graph of its derivative that crosses
Il the x-axis going down.

When you're looking at various points on the derivative graph, don't
forget that the y-coordinate of a point — like (—2,0)— on a graph of a first
derivative tells you the slope of the original function, not its height. Think
of the y-axis on the first derivative graph as the slope-axis or the m-axis.

| v A decreasing interval on a function corresponds to a negative interval

| onthe graph of the derivative (or zero for one point if the function has
a horizontal inflection point). The negative interval on the derivative
graph is below the x-axis (or in the case of a horizontal inflection point,
the derivative graph touches the x-axis at a single point). See intervals B,
C, D, and E in Figure 11-11, where f goes down all the way to the local
min at ( 2,—64 ) and where f’' is negative — except for the point (0, 0) —
until it gets to (2, 0),

+» A local min on the graph of a function corresponds to a zero (or x-inter-
cept) on an interval of the graph of its derivative that crosses the x-axis
going up.

Now retrace your steps and look at the concavity and inflection points of fin
Figure 11-11. First, consider intervals A and B in the {igure. Starting from the
left again, the graph of fis concave down — which means the same thing as
a decreasing slope — until it gets to the inflection point at about (-1.4, 39.6).
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So, the graph of f' decreases until it bottoms out at about (~1.4,-60). These
coordinates tell you that the inflection point at —1.4 on £ has a slope of - 60.
Note that the inflection point at (~1.4, 39.6) is the steepest point on that
stretch of the function, but it has the smallest slope because its slope is a
larger negative than the slope at any nearby point.

Between (1.4, 39.6) and the next inflection point at (0, 0), fis concave up,
which means the same thing as an increasing slope. So the graph of f'
increases from about 1.4 to where it hits a local max at (0, 0). See interval
C in Figure 11-11.

Time for a couple more rules:

| b A concave down interval on the graph of a function corresponds to a

! decreasing interval on the graph of its derivative — intervals A, B, and D
i in Figure 11-11. And a concave up interval on the function corresponds
j to an increasing interval on the derivative — intervals C, E, and F,

'fl:l ¥ An inflection point on a function (except for a vertical inflection point

il where the derivative is undefined) corresponds to a local extremum on

§  the graph of its derivative. An inflection point of minimum slope corre-

' sponds to a local min on the derivative graph; an inflection point of max-
imuin slope corresponds to a local max on the derivative graph.

After (0, 0), fis concave down till the inflection point at about ( 1.4, -39.6 ) —
this corresponds to the decreasing section of /' from (0, 0) to its min at

(1.4, -60) — interval D in Figure 11-11. Finally, fis concave up the rest of

the way, which corresponds to the increasing section of f’ beginning at
(1.4,-60)— intervals E and I in the figure.

Well, that pretty much brings you to the end of the road for now. Going back
and forth between the graphs of a function and its derivative can be very
trying at first. If your head starts to spin, take a break and come back to this
stulf later.

If I haven't already succeeded in deriving you crazy — aren’t these calculus
puns fantastic? — perhaps this final point will do the trick. Look again at
the graph of the derivative, £, in Figure 11-11 and also at the sign graph in
Figure 11-9. That sign graph, because it’s a second derivative sign graph,
bears exactly (well, almost exactly) the same relationship to the graph of f’ as
a first derivative sign graph bears to the graph of a regular function. In other
words, negative intervals on the sign graph in Figure 11-9 — to the left of -/2
and between 0 and /2 — show you where the graph of f' is decreasing, and
positive intervals on the sign graph — between —/2 and 0 and to the right of
2 — show you where f’ is increasing. And a point where the signs switch
from positive to negative or vice versa is a local extremum of . Clear as mud,
right?
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The Mean Ualue Theorem — GRRRRR

Figure 11-12:
An
lllustration
of the Mean
Value
Theorem.

You don't need the Mean Value Theorem for much, but it's a famous theorem —
one of the two or three most important in all of calculus — so you really should
learn it, It's very simple and has a nice connection to the mean value theorem
for integrals which [ show you in Chapter 16. Look at Figure 11-12.

¥
F
/ ~
(b, A1)
' |
i -:,' T b *
3

Here's the formal definition of the theorem.

The Mean Value Theorem: If fis continuous on the closed interval [a, b] and
differentiable on the open interval (a, b), then there exists a number cin (a, b)
such that

f(b)-r(a)

{OTEE =

Now for the plain English version. First you need to take care of the fine print.
The requirements in the theorem that the function be continuous and differ-
entiable just guarantee that the function is a regular, smooth function without
gaps or cusps. But because only a few weird functions have gaps or cusps,
you don't often have to worry about these fine points.

Okay, so here's what the theorem means. The secant line connecting points
(a,f(a))and (b, f (b))in Figure 11-12 has a slope given by the slope formula;
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Note for sticklers like me

In addition to disqualifying weird functions with
gaps or cusps, the differentiability requirement
ofthe mean value theorem also disqualifies per-
fectly sane functions like f (x) = i/x that have
aninflection pointwith a vertical tangent where
the slope and derivative are undefined. But the
thearem works just fine with such functions.

| find it puzzling that this clarification isn't men-
tioned in calculus texts — at least not in the
ones |'ve seen. The theorem shouldn't require
differentiability; it should require slightly less —
that a tangent can be drawn at every point of
the function in the given interval.

Slope =

Y:=¥i
Xz2= X1

F(b)~f(a)
Lol

Note that this is the same as the right side of the equation in the mean value
theorem. The derivative at a point is the same thing as the slope of the tan-
gent line at that point, so the theorem just says that there must be at least
one point between a and b where the slope of the tangent is the same as the
slope of the secant line from a to b,

Why must this be so? Here's a visual argument. Imagine that you grab the
secant line connecting (q, f (a))and (b, f (b)), and then you slide it up, keep-
ing it parallel to the original secant line. Can'you see that the two points of
intersection between this sliding line and the function — the two points that
begin at (a. f (a}) and (b, f {b)} — will gradually get closer and closer to each
other until they come together at (c, f (c))? If you raise the line any further,
you break away from the function entirely. At this last point of intersection,
{r:, f (c)}, the sliding line touches the function at a single point and is thus tan-
gent to the function there, while having the same slope as the original secant
line. Well, that does it, This explanation is a bit oversimplified, but it'll do.

Here's a completely different sort of argument that should appeal to your
common sense. If the function in Figure 11-12 gives your car’s odometer read-
ing as a function of time, then the slope of the secant line from a to b gives
your average speed during that interval of time, because dividing the dis-
tance traveled, /() - f(a), by the elapsed time, b - g, gives you the average
speed. The point {c:, f(c)), guaranteed by the mean value theorem, is a point
where your instantaneous speed — given by the derivative f'(¢) — equals

your average speed.
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Now, imagine that you take a drive and average 50 miles per hour. The mean
value theorem guarantees that you are going exactly 50 mph for at least one
moment during your drive, Think about it. Your average speed can’t be 50
mph if you go slower than 50 the whole way or if you go faster than 50 the
whole way. So, to average 50 mph, either you go exactly 50 for the whole
drive, or you have to go slower than 50 for part of the drive and faster than
50 at other times. And if you're going less than 50 at one point and more than
50 at a later point (or vice versa), you've got to hit exactly 50 at least once as
you speed up (or slow down).You can't jump over 50 — like you're going 49
one moment then 51 the next — because speeds go up by sliding up the scale,
not jumping. So, at some point, your speedometer slides past 50 mph, and for
at least one instant, you're going exactly 50 mph. That's all the mean value
theorem says.
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Chapter 12

Your Problems Are Solved:
Differentiation to the Rescue!

In This Chapter
» Getting the most bang for your buck — Optimization problems
+ Position, velocity, and acceleration — VROOOOM
Related rates — brace yourself

» Tangling with tangents

» Negotiating normals

- Lining up for linear approximations

» Profiting from business and economics problems

n the Introduction, | argue that calculus has changed the world in count-

less ways, that its impact is not limited to Ivory Tower mathematics, but is
all around us in down-to-earth things like microwave ovens, cell phones, and
cars. Well, it's now Chapter 12, and I'm finally ready to show you how to use
calculus to solve some practical problems, Better late than never,

Getting the Most (Or Least) Out of Life:
Optimization Problems

One of the most practical uses of differentiation is finding the maximum or
minimum value of a real-world function: the maximum output of a factory, the
maximum strength of a beam, the minimum time to accomplish some task,
the maximum range of a missile, and so on. I give you a couple standard
geometry examples now, and | return to this topic at the end of the chapter
with some business and economics examples.
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The maximum volume of a box

A box with no top is to be manufactured from a 30-inch-by-30-inch piece of
cardboard by cutting and folding it as shown in Figure 12-1:

c:ut—* fold

[P o m b ]
Figure 12-1;
The box is
made from

a 30"-by-30"
piece of
cardboard
by cutting
off the
corners and
folding up
the sides.
EOIETTrReeT

==

— h— 30-2h

| 'L | | 30-2h I

| —

What dimensions will produce a box with the maximum volume? Mathematics
often seems abstract and impractical, but here's an honest-to-goodness prac-
tical problem. If a manufacturer can sell bigger boxes for more and is making
a hundred thousand boxes, you better believe he or she wants the exact
answer to this question. Here's how you do it.

1.

Express the thing you want maximized, the volume, as a function of
the unknown, the height of the box (which is the same as the length
of the cut).

V=(-w- h
V(i) = (30— 2M)(30-2k) -k (You can see in Figure 12-1 that both the
fength and the width equal 30— 2h.)
= (900 120h + 4h*) - h
= 4h" - 120h* + 900h

. Determine the domain of your function.

The height can't be negative or greater than 15 inches (the cardboard is
only 30 inches wide, so half of that is the maximum height). Thus, sensi-
ble values for it are 0 = & = 15. You now want to find the maximum value
of V (f)in this interval. You use the method from the “Finding Absolute
Extrema on a Closed Interval” section in Chapter 11.

. Find the critical numbers of V (/i) in the open interval (0, 15) by set-

ting its derivative equal to zero and solving. And don’'t forget to check
for numbers where the derivative is undefined.
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V(h) = 4h* = 120h° + 900h
V(h) = 12h* - 240h + 900 (power rule)
0= 12h* = 240k + 900

0=h*-20k+75 (dividing both sides by 12)
0=(h-15(h-5) (ordinary trinomial factoring)
=15 or 5

Because 15 is not in the open interval (0, 15), it doesn’t qualify as a critical
number (though this is a moot point because you end up testing it below
anyway). And because this derivative is defined for all input values, there
are no additional critical numbers. So 5 is the only critical number.

4. Evaluate the function at the critical number, 5, and at the endpoints of
the interval, 0 and 15, to locate the function’s max.

V() = 4h"— 120h* + 900K

V(0)=0
V(5) = 2000
V(15)=0

WING/
-i“g‘ " The extremum (dig that fancy word for maximum or minimunt) you're looking
3 for doesn't often occur at an endpoint, but it can — so don’t fail to evaluate
the function at the Interval's two endpoints.

So, a helght of 5 inches produces the box with maximum volume (2000 cubic
inches). Because the length and width equal 30 - 2/, a height of 5 gives a
length and width of 30 - 2 - 5, or 20, and thus the dimensions of the desired
box are 5"-by-20"-by-20", Thal's it.

The maximum area of a corral — yeehaw!

A rancher can afford 300 feet of fencing to build a corral that's divided into
two equal rectangles. See Figure 12-2,

X X
i 5 ) A ) o o 5 ) 0 %

T TR
Figure 12-2:
Calculus for
cowboys —
maximizing

a corral, ) 0 )

Py X X

179



180 rartwv: pitferentiation 3

What dimensions will maximize the corral’s area? This is another practical
problem. The rancher wants to give his animals as much room as possible
given the length of fencing he can afford. Like all businesspeople, he wants
the most bang for his buck.

l.a. Express the thing you want maximized, the area, as a function of the

L.b.

two unknowns, x and y.
A=lw
=(2x)(y)
In the cardboard box example in the previous section, you can write the
volume as a function of one variable — which is always what you want.

But here, the area is a function of two variables, so Step 1 has two addi-
tional sub-steps.

Use the given information to relate the two unknowns to each other.

The fencing is used for seven sections, thus
JN=x+x+x+x+y+ty+y
300=4x+ 3y

. Solve this equation for y and plug the result into the y in the equation

from Step 1.a. This gives you what you need — a function of one
variable.

dx + 3y =300
3y = 300 - 4x
y= 300 dx

y= I{}[)—%x
A=(2x)(y)

A(x)= (2¢)(100— 5 x)

A(x)=200c- 8 x*

. Determine the domain of the function.

You can’t have a negative length of fence, so x can’t be negative, and the
most x can be is 300 divided by 4, or 75. Thus, 0 = x = 75,

. Find the critical numbers of A (x) in the open interval (0,75) by set-

ting its derivative equal to zero and solving.
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A(x)=200x- %—x’

A'(x)=200- lf x (power rule)

16
200~ 2 x=0
-l3f-5x—-2:m
=900 =3
x- zuo( |5J
_ 600
16
=375

Because A'is defined for all x-values, 37.5 is the only critical number.

4. Evaluate the function at the critical number, 37.5, and at the end-
points of the interval, 0 and 75.

A(x)=200x— 3 x*
A(0) =

A(317.5) = 3750
A(75) =

Note: Evaluating a function at the endpoints of a closed interval is a stan-
dard step In finding an absolute extremum on the interval. However, you
could have skipped this step here had you noticed that A (x) is an

upside-down parabola and that, therefore, its peak must be higher than
either endpoint,

The maximum value in the interval is 3750, and thus, an x-value of 37.5 feet
maximizes the corral’s area. The length is 2x, or 75 feet. The width is y, which
equals 100 - ﬂx Plugging in 37.5 gives you 100 - i{ 37.5), or 50 feet. So the
rancher will Imlid a 75-by-50' corral with an arca Df 3750 square feet,

Vo-Yo a Go-Go: Position, Ve{acrty,
and Acceleration

Every time you get in your car, you witness differentiation first hand. Your
speed is the first derivative of your position. And when you step on the accel-

erator or the brake — accelerating or decelerating — you experience a
second derivative,
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LIy
Figure 12-3:
The yo-yo's

height,
from0to 4
seconds.

e .

If a function gives the position of something as a function of time, the first
derivative gives its velocity, and the second derivative gives its acceleration.
S0, you differentiate position to get velocity, and you differentiate vefocity to
get acceleration.

Here's an example. A yo-yo moves straight up and down, Its height above the
ground, as a function of time, is given by the function H (¢) = £*- 6¢* + 5¢+ 30,
where tis in seconds and H (¢)is in inches. At ¢ = 0, it's 30 inches above the
ground, and after 4 seconds, it's at a height of 18 inches. See Figure 12-3,

1
L-
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274
24

21
18- {4.18)
15
124
9
5+
3l

- y

o] 1 2 3

B e

Velocity, V (t), is the derivative of position (height in this problem), and accel-
eration, A(t), is the derivative of velocity. Thus —

H(t)=t"=6t"+ 56+ 30
V(t)=H'(t) =3t"-12t+5 (power rule)
A()=V'(t)=H"(1)=6(t)-12 (power rule)

Take a look at the graphs of these three functions in Figure 12-4,

Using the three functions and their graphs, | want to discuss several things
about the yo-yo's motion:
b Maximum and minimurn height
|+ Maximum, minimum, and average velocity
1~ Total displacement

4 = Maximum, minimum, and average speed
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| ¥~ Total distance traveled
:3.':= +~ Periods of acceleration and deceleration

i~ Maximum and minimum acceleration

Hia
(4, 18)
154 i
]
12 4= :
ot :
6 f
2l : ) = 13- 6t2 + 5t+ 30
1
- f———f—>-t
0 15 600 ERa
(4, 5)
M =3t2- 12145
— |
Alt)
I —— Al ki4,12)
Figure 12-4: 4| :
The graphs : i
=it I
il ] : Ald) = Bt-12
yo-yo's i
height, — t
velacity, and ; ?
acceleration :
functions 1
from 0to 4 i
saconds. |
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Because this is a lot to cover, I'm going to cut some corners — like not always
checking endpoints when looking for extrema if it’'s obvious that they don't
occur at the endpoints. Do you mind? I didn't think so. (Position, velocity,
and acceleration problems make use of several ideas from Chapter 11 — local
extrema, concavity, inflection points — so you may want to take a look back
at those definitions if you're a little hazy.) Before tackling the bulleted topics,
however, there's one thing [ want to discuss — the difference between veloc-
ity and speed, and their relationship to acceleration.

Velocity versus speed

None ol your [riends will complain — or even notice — if you use the words
“velocity” and “speed” interchangeably, but your [riendly mathematician witl
complain. For the velocity function in Figure 12-4, upiward motion by the yo-
yo is defined as a positive velocity, and downward motion is a negative veloc-
ity. This Is the standard way velocity is treated in most calculus and physics
problems. (Or, if the motion is horizontal, going right is a positive velocity and
going left is a negative velocity.)

Speed, on the other hand, is always positive (or zero). If a car goes by at 50
mph, for instance, you say its speed is 5, and you mean positive 50, regardless
of whether it's going to the right or the left. For velocity, the direction matters;
for speed, it does not. Speed, in some sense, is a simpler idea than velocity,
appealing to our common sense, but it’s the odd man out in calculus because
it doesn't fit nicely into the three-function scheme shown in Figure 124,

You've got to keep the velocity-speed distinction in mind when analyzing
velocity and acceleration. For example, if an object is going down (or to the
left) faster and faster, its speed is increasing, but its velocity is decreasing
because its velocily Is becoming a bigger and bigger negative (and bigger neg-
atives are smaller numbers). This seems weird, but that's the way it works.
And here's another strange thing. Acceleration is defined as the rate of
change of velocity, not speed. So, if an object is slowing down while going in
the downward direction, and it thus has an increasing velocity — because the
velocity is becoming a smaller and smaller negative — the object has a posi-
tive acceleration, You see the object slowing down, but you say that it's accel-
erating instead of decelerating. | could go on with this, but [ bet you've had
enough,

Maximum and minimum height

The maximum and minimum of H (¢) occur at the local extrema you can see
in Figure 12-4. To locate them, set the derivative of H (t), that's V (t), equal to
zero and solve.
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H'(£)=V(t)=3t"—12t+5
0=3t-12t+5
oo —(12) & /(-12)7-4(3) (5)
23

(quadratic [ormula)

12+ /84
T T

12+2,/21
LSS

_64/21

]

=~-047 or ~3.53
These two numbers are the zeros of V (¢) and the t-coordinates, that’s tirme-
coordinates, of the max and min of H (¢), which you can see in Figure 12-4. In
other words, these are the times when the yo-yo reaches its maximum and

minimum heights. Plug these numbers into f (t) to obtain the heights:

H{0.47) = 31.1
H(3.53) = 169

So the yo-yo gets as high as about 31.1 inches above the ground at t = 0.47
seconds and as low as about 16.9 inches at t = 3.53 seconds.

Velocity and displacement

As | explain in the “Velocity versus speed” section, velocily is basically like
speed except that speed is always positive, but going down (or left) is a nega-
tive velocity. The connection between displacement and distance traveled is
similar: Distance traveled is always a positive, but going down (or left) counts
as a negative displacement. The basic idea is this: If you drive from your
home to a store that's 1 mile away — taking the scenic route and clocking

3 miles on your odometer — your total distance traveled is 3 miles, but your
displacement is just 1 mile.

Total displacement

Total displacement is defined as final position minus initial position. So,
because the yo-yo starts at a height of 30 and ends at a height of 18,

Total displacement = 18 = 30= —12

This is negative because the net movement is downward.
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Average velocity
Average velocity is given by total displacement divided by elapsed time. Thus,

Average velocity = —l‘%

==3

This tells you that the yo-yo is, on average, going down 3 inches per second.

Maximum and minimum velocity

To determine the yo-yo's maximum and minimum velocity during the interval
from () to 4 seconds, set the derivative of V (¢), that's A(t), equal to zero and
solve:

Vi (t)=A(t)=6t-12

6t—12=10
6t=12
t=2
Look again at Figure 1244, At t = 2, you gel the zero of A (¢), the local min of V (),

and the inflection point of H (¢). But you already knew that, right? (If not, check
out Chapter 11.)

Now, evaluate V (t) at the critical number, 2, and at the interval’s endpoints,
0 and 4:

V(0)=5
Vi(2)==7
V(4)=5

So, the yo-yo has a maximum velocity of 5 inches per second twice — at both
the beginning and the end of the interval. It reaches a minimum velocity of -7
inches per second at t = 2 seconds.

Speed and distance traveled

Unlike velocity and displacement, which have technical definitions, speed and
distance traveled have common sense meanings. Speed, of course, is the thing
you read on your speedometer, and you can read distance traveled on your
odometer or your “tripometer” after setting it to zero,
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Total distance traveled

To determine total distance, add up the distances traveled on each leg of the
yo-yo's trip: the up leg, the down leg, and the second up leg.

First, the yo-yo goes up from a height of 30 inches to about 31.1 inches
(where the first turn-around point is). That's a distance of about 1.1 inches,
Next, it goes down from about 31.1 to about 16.9 (the height of the second
turn-around point). That's a distance of 31.1 minus 16.9, or about 14.2 inches.
Finally, the yo-yo goes up again from about 16.9 inches to its final height of
18 inches. That's another 1.1 inches. Add these three distances to obtain the
total distance traveled: ~1.14~14.2 +~1.12:16.4 inches

Average speed

The yo-yo's average speed is given by the total distance traveled divided by
the elapsed time. Thus,

Average speed = 1("4'4

= 4.1 inches per second

Maximum and minimum speed

You previously determined the yo-yo's maximum velocity (5 inches per second)
and its minimum velocity (=7 inches per second). A velocity of -7 is a speed of 7,
50 that's the yo-yo's maximum speed. Its minimum speed of zero occurs at the
two turnaround points.

For a continuous velocity function, the minimum speed is zero whenever the
maximum and minimum velocities are of opposite signs or when one of them
is zero. When the maximum and minimum velocities are both positive or both
negative, then the minirnurn speed is the lesser of the absolute values of the
maximum and minimum velocities. In all cases, the maximum speed is the
greater of the absolute values of the maximum and minimum velocities.

Burning rubber and skid marks:
Acceleration and deceleration

Don't forget that for calculus acceleration and deceleration have technical
definitions, not the ones you're used to — see the discussion on these defini-
tions in the “Velocity versus speed” section. :
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Periods of acceleration and deceleration

You can readily see the periods of acceleration and deceleration on the graph
of A(¢)in Figure 124, Where A(t)is negative — from t = 0 to t =2 —that's a
negative acceleration, or a deceleration, which means that the velocity s
decreasing. Where A(t)is positive — from { = 2 to f = 4 — you've got accelera-
tion, which means that the velocity is increasing. Where tis exactly 2, A(t) is
zero, so there's neither acceleration nor deceleration — the velocity, for just
this one instant, is unchanging.

Mayimum and minimum acceleration

Using calculus to determine the maximum and minimum acceleration may
seem pointless when you can just look at the graph of A (t) and see that the
minimum acceleration of =12 occurs at the far left when ¢ = 0 and that the
acceleration then goes up to its maximum of 12 at the far right when ¢ = 4. But
it's not inconceivable that you'll get one of those incredibly demanding calcu-
lus teachers who has the nerve to require that you actually do the math and
show your work — so bite the bullet and do it.

To find the acceleration’s min and max from ¢ = 0 to ¢ = 4, set the derivative of
A(l)equal to zero and sclve:

A(t)=6t-12
A(t)=6
0=6

What the heck is a second squared?

Note that | use the unit 21Shes_per second g,

acceleration instead of the equivalent but weird-
looking unit, inehes/second’. You often see
acceleration given interms of a distance divided
by second”. But what the heck is a second™?
It's meaningless, and something like inches/
second’ is a bad wayto think about acceleration,
The bestway to understand acceleration is asa
change in speed per unit of time. If a car can go
from 0 to 60 mphin 6 seconds, that's an increase
in speed of 60 mph in 6 seconds, or, on average,
10 mph each second —that's an acceleration of
%. It's slightly more confusing when the
speed has a unit like feet/second and the unit of
time for the acceleration is also second, because

then the word second appears twice. But it still
works like the car example. Say an object starts
at rest and speeds up to 10 feet/second after
1 second, then up to 20 feet/second after 2 sec-
onds, to 30 feet/second after 3 seconds, and
so on. Its speed is increasing 10 feei/second
each second and that's an acceleration of
0 eet g:;azeuand or o festfsecgna'l It's helpful to
write the acceleration unit in either of these
ways as a speed over the unit of time —instead
of 10 feet per second per second or 10 feet/
second/second—to emphasize that accelera-
tion is a change in speed per unit of time. Think of
acceleration this way, not in terms of that
sgcond’ nonsense.
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This equation, of course, has no solutions, so there are no eritical numbers
and thus the absolute extrema must occur at the interval’s endpoints, 0 and 4.

A(0)=6:0-12

1o Inches per second
second

A{4)=6-4-12

inches per second

=12 second

You arrive at the answers you already knew.

Tying it all together

Note the following connections among the three graphs in Figure 124. The
negative section on the graph of A(t)— from ¢ = 0 to t = 2 — corresponds to a
decreasing section of the graph of V (t) and a concave down section of the
graph of H (¢). The positive interval on the graph of A (t)—from f=2tot=4 —
corresponds to an increasing interval on the graph of V (t) and a concave up
interval on the graph of /f (1). When t = 2 seconds, A (¢} has a zero, V (1) has a
{ocal minimum, and H (t) has an inflection point,

Related Rates — They Rate, Relatively

Say you're filling up your swimming pool and you know how fast water is
coming out of your hose, and you want to calculate how fast the water level in
the pool is rising. You know one rate (how fast the water is being poured in),
and you want to determine another rate (how fast the water level is rising).
These rates are called related rates because one depends on the other — the
faster the water is poured in, the faster the water level will rise. In a typical
related rates problem, the rate or rates you're given are unchanging, but

the rate you have to figure out is changing with time. You have to determine
this rate at one particular point in time.

Solving these problems can be tricky at first, but with practice you get the
hang of it. The strategies and tips | discuss are a big help. Now for three
examples.



’ 90 Part IV: Differentiation

Blowing up a balloon

You're blowing up a balloon at a rate of 300 cubic inches per minute. When the
balloon’s radius is 3 inches, how fast is the radius increasing?

1. Draw a diagram, labeling the diagram with any unchanging measure-
ments (there aren’t any in this unusually simple problem) and making
sure to assign a variable to anything in the problem that's changing
(unless it’s irrelevant to the problem.) See Figure 12-5.

e
Figure 12-5: ri3)
Blowing up
a balloon —
time to
party.
[T
Notice that the radius in Figure 12-5 is labeled with the variable r. The
radius needs a variable because as the balloon is being blown up, the
radius is changing. | put the 3 in parentheses to emphasize that the
number 3 is nof an unchanging measurement. The problem asks you
to determine something when the radius is 3 inches, but remember,
< the radius is constantly changing.

In related rates problems, it's important to distinguish between what is
changing and what is rot changing.

The volume of the balloon is also changing, so you need a variable for
volume, V. You could put a Von your diagram to indicate the changing
volume, but there's really no easy way to mark part of the balloon with
a V like you can show the radius with an r.

2. List all given rates and the rate you're asked to determine as derivatives
with respect to time.

You're pumping up the balloon at 300 cubic inches per minute. That's
a rate — it's a change in volume (cubic inches) per change in time
(minutes). So,

4Y. - 300 cubic inches per minute

You have to figure out how fast the radius is changing, so

g =7
dt
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3. Write down the formula that connects the variables in the problem,
Vand r.

Here’s the formula for the volume of a sphere:

V= %j‘rrj

4. Differentiate your formula with respect to time, &.

This works like implicit differentiation because you're differentiating
with respect to ¢, but the formula is based on something else, namely r.
dV _ 4 2 dr
g T 3T
2 dr
=4xr ar

You get a % just like you geta y' or a j% with implicit differentiation.
5. Substitute known values for the rate and variables in the equation
from Step 4, and then solve for the thing you're asked to determine.

It's given that dg =300, and you're asked to figure out ‘:r when r =3,

$0 plug in these numbers and solve for -:;I

Be sure to differentiate (Step 4) before you plug the given information
into the unknowns (Step 5).

dr
300=36a* i

300 _ dr
3bmr — df

g—: = 2.65 inches per minute

30 the radius is increasing at a rate of about 2.65 inches per minute when the
radius measures 3 inches. Think of all the balloons you've blown up since
your childhood. Now you finally have the answer to the question that's been
bugging you all these years.

By the way, if you plug 5 into rinstead of 3, you get an answer of about

0.95 inches per minute. This should agree with your balloon-blowing-up
experience — the bigger the balloon gets, the slower it grows. It's a good
idea to check things like this every so often to see that the math agrees with
YOUr common sense,

Filling up a trough

Here's a garden-variety related rates problem. A trough is being filled up with
swill. It's 10 feet long, and its cross-section Is an isosceles triangle with a base
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of 2 feet and a height of 2 feet 6 inches (with the vertex at the bottom, of
course). Swill's being poured in at a rate of 5 cubic feet per minute. When the
depth of the swill is 1 foot 3 inches, how fast is the swill level rising?

1. Draw a diagram, labeling the diagram with any unchanging measure-
ments and assigning variables to any changing things. See Figure 12-6.

Figure 12-6;
Filling a il -
trough with = Swill Level
swill —
lunch time.
[ e i

{Note: The perspective is not quite right, so you can see the exact shape of the triangle.)

Note that Figure 12-6 shows the unchanging dimensions of the trough,

2 feet, 2 feet 6 inches, and 10 feet, and that these dimensions do not
have variable names like { for length or & for height. And note that the
changing things — the height (or depth) of the swill and the width of the
surface of the swill (which gets wider as the swill gets deeper) — have
variable names, h for height and b for base (I call it the base instead of
the width because it's the base of the upside-down triangle shape made
by the swill). The volume of the swill is also changing, so you can call
that V, of course,

2. List all given rates and the rate you're asked to figure out as derivatives
with respect to fime.
% =5 cubic feet per minute
dh _
dr '
3.a. Write down the formula that connects the variables in the problem:
V, h, and b.

I'm absolutely positive that you remember the formula for the volume of
a right prism (the shape of the swill in the trough):

V= (area of base)( height)
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3.b.

Note that this “base” is the base of the prism (the whole triangle at the
end of the trough), not the base of the triangle which is labeled b in
Figure 12-6. Also, this “height” is the height of the prism (the length of
the trough), not the height labeled /i in Figure 12-6. Sorry about the con-
fusion. Deal with it.

The area of the triangular base equals L bhand the “height” of the prism
is 10 feet, so the formula hecomes

= Mo
lf'-zbh 10

V=Dbbh
Now, unlike the formula in the balloon example, this formula contains
a variable, b, that you don't see in your list of derivatives in Step 2,
S0 Step 3 has a second part — getting rid of this extra variable,

Find an equation that relates the unwanted variable, b, to some other
variable in the problem so you can make a substitution that leaves
you with only V and h.

The triangular face of the swill in the trough is similar to the triangular
face of the trough itself, so the base and height of these triangles are
proportional. (Recall from geometry that similar triangles are triangles
of the same shape; their sides are proportional.) Thus,

b__h

T
2.5h=2n (cross multiplication)

_2h

b= 2.5

b=0.8h

Similar triangles come up a lot in related rates problems, Look for them
whenever the problem involves a triangle, a triangular prism, or a cone
shape.

Now substitute 0.8/ for b in your formula from Step 3.a.
V="5bh
V=5-08h-h

V=4h*

. Differentiate this equation with respect to t.

dV _ gp dh
car =g

. Substitute known values for the rate and variable in the equation

from Step 4 and then solve.

You know that -‘ﬂ}i = b cubic feet per minute, and you want to determine

% when ?fl;equais 1 foot 3 inches, or 1.25 feet, so plug in 5 and 1.25 and
i

solve for dr
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dV _ g, dh

Tl
_n, dh
5=8:125-
_10.dh
5=10-7

dh_1

dt ~ 2

That's it. The swill's level is rising at a rate of % foot per minute when the
swill is 1 foot 3 inches deep. Dig in.

Fasten your seat belt: You're approaching
a calculus crossroads

Ready for another common related rates problem? One car leaves an inter-
section traveling north at 50 mph, another is driving west toward the inter-
section at 40 mph. At one point, the north-bound car Is three-tenths of a mile
north of the intersection and the west-bound car is four-tenths of a mile east
of the intersection, At this point, how fast is the distance between the cars
changing?

1. Do the diagram thing. See Figure 12-7.

N
¥
A
50 mph
y(0.3)
TR
Figure 12-7:
Calculus — 2o
i's adrive in
the country.

RN x(04) 40 mph
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4.

5.

Before going on with this problem, | want to mention a similar problem
you may run across if you're using a standard calculus textbook. It
involves a ladder leaning against and sliding down a wall, Can you see
that the diagram for such a ladder problem would be very similar to
Figure 12-7 except that the y-axis would represent the wall, the x-axis
would be the ground, and the diagonal line would be the ladder? These
problems are quite similar, but there’s an important difference. The dis-
tance between the cars is changing so the diagonal line in Figure 12-7 is
labeled with a variable, s. A ladder, on the other hand, has a fixed length,
so the diagonal line in your diagram for the ladder problem would be
labeled with a number, not a variable.

. List all given rates and the unknown rate.

ds_,

‘1,—"; is negative because car B is going left, in the negative x direction,

3. Write the formula that relates the variables in the problem: x, y, and s.

There's a right triangle in your diagram, so you use the Pythagorean
Theorem: a*+ b*= ¢*, For this problem, x and y are the legs of the right
triangle and s is the hypotenuse, so x* 4+ y*= st

The Pythagorean theorem is used a lot in related rates problems. If there's
a right triangle in your problem, it's quite likely that a’+ b*=c"is the for-
mula you'll need.

Because this formula contains the variables x, y, and s, which all appear
in your list of derivatives in Step 2, you don't have to tweak this formula
like you did in the trough example.

Differentiate with respect to (.

s=x*+y’
ds _ 5. dx VLS L e '
2s ?? =2 gt 2y dat (implicit differentiation

with the power rule)
Substitute and solve for %
x=04, y=03, %% = 40, ¥ =50, and s = ...

dt * gt
ds

“Holy devoid distance lacking length, Batman — how can we solve for -
unless we have values for the rest of the unknowns in the equation?”
“Take a chill pill, Robin — just use the Pythagorean Theorem again.”

195
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st=x*+y*

s'=04"+ 0.3
=0.16+ 0.09
=0.25

s=+0.5 (square rooting both sides)

You can reject the negalive answer because s obviously has a positive
length, So 5 =10.5,

Now plug everything into your equation.

25 =2 gt t W g
2-0.5%-2-[14-(-4{:) 20350
198 - 32430
dS .
&5 -

This negative answer means that the distance, s, is decreasing.

Thus, when car A is 3 blocks north of the intersection and car B is 4 blocks
east of the intersection, the distance between them is decreasing at a rate of
2 mph.

Tangents and Normals: Joined at the Hip

By now you know what a line tangent to a curve looks like — if not, one or both
of us has definitely dropped the ball. A normal line is simply a line perpendicu-
lar to a tangent line at the point of tangency. Problems involving tangents and
normals are common applications of differentiation.

The tangent line problem

1 bet there have been several times, just in the last month, when you've wanted
to determine the location of a line through a given point that’s tangent to a
given curve. Here's how you do it.

Determine the points of tangency of the lines through the point (1, -1) that
are tangent to the parabola y = x° If you graph the parabola and plot the
point, you can see that there are two ways to draw a tangent line from (1, -1):
up to the right and up to the left. See Figure 12-8,
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Figure 12-8:
The
parabaola
y=x"and
two tangent =32
lines i
through
(1,-1.

The key to this problem is in the meaning of the derivative: The derivative of
a function at a given point is the slope of the tangent line at that paoint. So, all
you have to do is set the derivative of the parabola equal to the slope of the
tangent lines and solve,

1. Because the equation of the parabola is y = x*, you can take a general
point on the parabola, ( x,y ), and substitute x* for y.

S0, label the two points nftangency(x, xj).
2. Take the derivative of the parabola,
Y s s
y=2 ;
3. Using the slope formula, ﬁjfi:, set the slope of each tangent line from

(1,-1)to (x, x’) equal to the derivative at {x, xz), which is 2x, and
solve for x.

By the way, the math you do in this step may make more sense to you if
you think of it as applying to just one of the tangent lines — say the one
going up to the right — but the math actually applies to both tangent
lines simultaneously.

x'=(=1)
¥-1 ~ &
Xi=(~1)=2x(x—1)

x4 1=20"-2x

0=x"-2x-1
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e 2+ ,/(—2:),—‘.—14 (=1 (quadratic formula)

_2x/4+4
R i

2+ /8
2

_2+2/2
T o

=1+ /2
S0, the x-coordinates of the points of tangency are1+ /2 and 1 - /2.
4. Plug each of these x-coordinates into y = x” to obtain the y-coordinates.
y=(1+/ E} :
=1+2/2+2
=3+2/2

y=(1-/2)’
=1-2/2+2
=3-2/2

Thus, the two points of tangency are (1 + J2,3+2 ﬁ} and
(1-/2, 3-2,/2), or about (2.4, 5.8) and (~0.4, 0.2).

The normal line problen

Here's the companion problem to the tangent line problem in the previous sec-
tion. Find the points of perpendicularity for all normal lines to the parabola,
y= % x* that pass through the point (3, 15).

\BER
@) A line normal to a curve at a given point is the line perpendicular to the line

that's tangent at that same point.

Graph the parabola and plot the point (3, 15). Now, before you do the math,
try to approximate the locations of all normal lines. How many can you see?
It's pretty easy to see that, starting at (3, 15), one normal line goes down

slightly to the right and another goes down a bit steeper toward the left. But
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did you find the third one that's between these two? Don't worry if you didn’t
see this one because when you do the math, you get all three solutions.

P When doing calculus, or any math for that matter, come up with a common
sense, ballpark estimate of the solution to a problem before doing the math
(when possible and time permitting). This deepens your understanding of the
concepts involved and provides a check to the mathematical solution,

Figure 12-9 shows the parabola and the three normal lines,

BT (3,15)

eSS
Figure 12-9:
The
parabala

y= % X
and three
normal lines
through

(3, 15).
[sE i Y

Looking at Figure 12-9, you can appreciate how practical this problem is. It'll
really come in handy if you happen to find yourself standing inside the curve
of & parabolic wall, and you want to know the precise location of the three
points on the wall where you could throw a ball and have it bounce straight
back to you.

The solution is very similar to the solution of the tangent line problem,
except that in this problem you use the rule for perpendicular lines:

The slopes of perpendicular lines are opposite reciprocals.

Each normal line in Figure 12-9 is perpendicular to the tangent line drawn at
the point where the normal meets the curve. So the slope of each normal line
is the opposite reciprocal of the slope of the corresponding tnngt-ni — which,
of course, is given by the derivative. So here goes.

1. Take a general point, (x, y ), on the parabola y = % x*% and substitute
% x* for y,

50, label each point of perpendicularity(x. %x*).
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2. Take the derivative of the parabola.
el "ll[; 2
Y % X
3. Using the slope formula, %, set the slope of each normal line
from (3,15) to (x. % x“) equal to the opposite reciprocal of the

derivative at (x, i6 x* |, and solve for x,

1 2_1E

16 X 15

_‘__3 =—< (the opposite reciprocal of
= I X

Ex or 3 is —%)
"llr}' x'=15x=-8x+24 (cross multiply and distribute)

(bring all terms to one side and

x'=112x-384=0 multiply both sides by 16)

Now, there’s no automatic way to get exact solutions to this cubic (3rd
degree) equation like the way the quadratic formula gives you the solu-
tions to a 2nd degree equation. Instead, you can graph y = x* - 112x — 384
and the x-intercepts give you the solutions, but with this method, there's
no guarantee that you'll get exact solutions. (Ollen, approximate solutions
are the best you can do with cubic equations.) Here, however, you luck
out — actually I had something to do with it — and get the exact solutions
of -8, -4, and 12,

4, Plug each of these x-coordinates into y = % x” to obtain the
y-coordinates.

1 W
y=1g(=8)°
=4

y=15(12)*
=9

Thus, the three points of normalcy are (-8,4), (-4,1), and (12,9) —
play balll
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Straight Shooting with Linear
Approximations

Because ordinary functions are locally linear (that's straight) — and the further
you zoom in on them, the straighter they look — a line tangent to a function is
good approximation of the function near the point of tangency. Figure 12-10
shows the graph of f(x) = /x and a line tangent to the function at the point
(9,3). You can see that near (9, 3), the curve and the tangent line are virtually
indistinguishable.

T
Figure 12-10:
The graph of
f(x)=4x
and a line
tangent to
the curve
at(9, 3).

Determining the equation of this tangent line is a breeze. You've got a point,
(9,3), and the slope is given by the derivative of fat 9;

f)=/x
=x/
()= %x'/'/z (power rule)

Now just take this slope, % and the point (9, 3), and plug them into the point-

slope form:
Y=yi=m(x-x)
y=3=1(x-9)
y=3+%(x-!])

201
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Figure 12-11:
The lingar
approxima-
tion line and
several of
its points.
=5 =P s

That's the equation of the line tangent to f (x) = Jx at (9,3). I suppose you may
be wondering why [ wrote the equation as y = 3+ %(x - 9). It might seem

more natural to put the 3 to the right of % (x—19), which, of course, would also
be correct. And | could have simplified the equation further, writing it in

y = mx+ b form. I explain later in this section why | wrote it the way I did —
keep your shirt on.

If you have your graphing calculator handy, graph f (x) = /x and the tangent
line. Zoom in on the point (9,3)a couple times, and you see that the curve
gets straighter and straighter and the curve and tangent line get closer and
closer.

Now, say you want to approximate the square root of 10. Because 10 is pretty
close to 9, and because you can see from Figure 12-10 that £ (x) and its tan-
gent line are close to each other at x = 10, the y-coordinate of the line at x = 10
is a good approximation of the function value at x = 10, namely ,/10.

Just plug 10 into the line equation for your approximation:

y=3+5(x=9)
=3+ 1(10-9)
=3+%
el
_L%G

Thus, the square root of 10 is about 3 1 Thisis only about 0.004 more than
the exact answer of 3.1623. . . . The error is roughly a tenth of a percent.

Now | can explain why | wrote the equation for the tangent line the way I did.
This form makes it easier to do the computation and easier to understand
what's going on when you compute an approximation. Here's why. You know
that the line goes through the point (9, 3), right? And you know the slope of
the line Is ¢. S0, you can start at (9, 3) and go to the right (or left) along the
line in the stair-step fashion, as shown in Figure 12-11: over 1, up B over 1,
up %; and so on.

g 3%
(10,3 1/g) '”'Lf:m;

(9,3 o e 1
(et ﬁ_wa—_“';}‘ T; AT :
W 5

(7, 2 45) B
_-__,._f'-_%-F—TﬁE 1
y=3+ s (x—9)
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S0, when you're doing an approximation, you start at a y-value of 3 and g0 up
§ for each 1 you go to the right. Or if you go to the left, you go down (1—1 for
each 1 you go to the left. When the line equation is written in the above form,
the computation of an approximation parallels this stair-step scheme.

Figure 12-11 shows the approximate values for the square roots of 7, 8, 10, 1 1,

and 12. Here's how you come up with these values. To get to 8, for example,

from (9,3), you go 1 to the left, so you go down % o2 % or to get to 11 from

(9,3), you go two to the right, so you go up two-sixths to 3% or 3 % (If you go
to the right one halfto 9 % you go up haif of a sixth, that's a twelfth, to 3 1—12- —

the approximate square root of 9 %.)

Below are the errors for the approximations shown in Figure 12-11. Note that
the errors grow as you get further from the point of tangency (9, 3); also, the
errors grow faster going down from (9, 3) than going up from (9, 3) — errors

often grow faster in one direction than the other with linear approximations.

/T: 0.8%error

/8: 0.2% error

m: 0.1% error

J/11: 0.5% error

f 12: 1.0% error
Linear Approximation Equation: Here's the general form for the equation of
the tangent line that you use for a linear approximation. The values of a func-

tion f (x) can be approximated by the values of the tangent line { (x)near the
point of tangency, (X, f (xu) ), where

I(x)=f(x0)+F (x0)(x—x0)

This is less complicated than it looks. It’s just the gussied-up calculus
version of the point-slope equation of a line you've known since Algebra I,
Y=y=m(x~xi), with the y) moved to the right side:

y=ytm(x-x)

This algebra equation and the above equation for / {x) differ only in the sym-
bols used; the meaning of both equations — term for term — is identical.
And notice how both equations resemble the equation of the tangent line in
Figure 12-11.

Whenever possible, try to see the basic algebra or geometry concepts at the
heart of fancy-looking calculus concepts.
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Business and Economics Problems

=
©

LTI TR
Figure 12-12:
The graph
of a cost
function
£({x)

Believe it or not, calculus is actually used in the real world of business and eco-
nomics — learn calculus and increase your profits! Tell me: When you're dri-
ving around an upscale part of town and you pass by a huge home, what's the
first thing that comes to your mind? [ bet it's “Just look at that home! That guy
(gal) must know calculus.”

Managing marginals in economics

Look again at Figures 12-10 and 12-11 in the prwmus section. Recall that the
derivative and thus the slope of y = Jx at (9,3)1s E and that the tangent line
at this point can be used to approximate the function near the point of tan-
gency. So, as you go over 1 from 9 to 10 along the function itself, you go up
abourll—) And, thus, ,,f_ 0 is about [I more than ﬁ The mathematics of margin-
als works exactly the same way.

Marginal cost, marginal revenue, and marginal profit all involve how much a
function goes up (or down) as you go over | to the right — just like a linear
approximation.

Say you've got a cost function that gives you the total cost, C (x ), of producing
x items. See Figure 12-12.

Marginal cost

1

Extra cost of

producing one
more item

The derivative of C ( x) at the point of tangency gives you the slope of the tan-
gent line and thus the amount you go up as you go 1 to the right along the
line. Going 1 to the right along the cost function itself shows you the increase
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in cost of producing one more item. So, because the tangent line is a good
approximation of the cost function, the derivative of C — called the marginal
cost — is the approximate increase in cost of producing one more item.
Marginal revenue and marginal profit work the same way:.

Before doing an example involving marginals, there's one more piece of busi-
ness to take care of. A dermand function tells you how many items will be pur-
chased (what the demand will be) given the price. The lower the price, of
course, the higher the demand. You'd think that the number purchased
should be a function of the price — input a price and find out how many
items people will buy at that price — but traditionally, a demand function is
done the other way around. The price is given as a function of the number
demanded. I know that seems a bil odd, but the function works either way.
Think of it like this — if a retailer wants to sell a given number of items, the
demand function tells him or her what the selling price should be.

Okay, so here’s the example. A widget manufacturer determines that the
demand function for his widgets is

1000
e

where x is the demand for widgets at a given price, p. The cost of producing
x widgets Is given by the following cost function:

C(x)=10x+100/x + 10,000

Determine the marginal cost, marginal revenue, and marginal profit at x = 100
widgets. Also, how many w1dg@t~s should be Iﬂdﬂllfal tured and what should
they be sold lnr to produce the maximum profit, and what is that maximum
profit? (If you get through this, I'll nominate you for the Nobel Prize in
economics.)}

Marginal cost

Marginal cost is the derivative of the cost function, so take the derivative and
evaluate it at x = 100,

C(x)=10x+ 100 /x + 10,000

50
C'(x)=10+-= (power rule
5 ( )

50
100) =10+ -2
Gg100); /100

50

=10+ == 10

=15

Thus, the marginal cost at x = 100 is $15 — this is the approximate cost of
producing the 101st widget.



206

Part IV: Differentiation

Marginal revenue
Revenue, R (x), equals the number of items sold, x, times the price, p:
R(x)=x-p
1000
Ix
v

=X {uslng the above demand funt'.ti{:an)

" ll.':l?[lx ; V:_'f (rationalizing the {Ienmninatmj
X

W X
_ 1000x /x
B

= 1000,/ x

Marginal revenue is the derivative of the revenue function, so take the deriva-
tive of R (x) and evaluate it at x = 100;

R(x)=1000,x

R'i(x)= I;Pg (power rule)

R'(100) = %

=00
Thus, the approximate revenue from selling the 101st widget is $50.

Marginal profit
Profit, P (x), equals revenue minus cost. So,
P(x)=R(x)-C(x)
=1000/x — (10x+ 100 /x -+ 10,000)
= —10x+ 900,/x - 10,000

Marginal prolfit is the derivalive of the profit function, so take the derivative
of P (x)and evaluate it at o = 100:

P (x)=-10x+ 900,/ x — 10,000
' 45()
Plx)=-10+—= ower rule

P’ (100) = —10+ 220
100

=~10+45
=35

Selling the 101st widget brings in an approximate profit of $35.
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Did you notice either of the two shortcuts you could have taken here? First,
you can use the fact that

P(x)=R'(x)-C"(x)

to determine P’ ( x) directly, without first determining P (x). Then, after get-
ting P’ (x ), you just plug 100 into x for your answer,

And, if all you want to know is P’ (100), you can use the following really short
shortcut:
P'(100) = R (100) - C"(100)
=50-15
=3b

This is common sense. If it costs you about $15 to produce the 101st widget
and you sell it for about $50, then your profit is $35.

I did it the long way because you need both the profit function, P (x), and the
marginal profit function, P’ (x), for the problems below.

Maximum profit
You determine maximum profit just as you figure the maximum of any func-

tion: Set the derivative of profit — that’s marginal profit — equal to zero,
solve for x, then plug the result into the profit function.

. 450)
P(x)=-10+=2
{x) e
0=-10 + 450
Jx
_ 450
10===
VX
10/ x = 450
Jx=45
x=2025

So, the maximum profit occurs when 2025 widgets are sold. Now, plug this
into P(x)
P (x)=~10x+900/x = 10,000
P (2025) = —10- 2025 + 900 /2025 — 10,000
=—20,250 4+ 900- 45 - 10,000
=10,250

That's the maximum profit — $10,250. Last, plug the number sold into the
demand function to determine the profit-maximizing price:
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Figure 12-13:
The revenue
and cost
functions.
The vertical
distance
between

the two
functions,

at a givan
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that x-value,
T
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=~ 22,22

So, in theory, the maximum profit of $10,250 occurs when the price is set at
$22.22, At this price, 2025 widgets will be sold. Figure 12-13 sums up these
results. Note that because profit equals revenue minus cost, the vertical dis-
tance or gap between the revenue and cost functions at a given x-value gives
the profit at that x-value. Maximum profit occurs where the gap is greatest.

¥
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$60,000-- ol
$40,000-+
$20,000 - Maximum Profit = $10,250
-t | | t t X
1000 2000 3000 4000

(Note that while the scale of this graph makes C ( x) look like a straight line,
its middle term of 100 J x means that it is not exactly straight.)

And here's another thing. Because maximum profit occurs where P'(x) =0,
and because P’ (x) =R’ (x) - C"(x), it follows that R (x) = C' (x) where the
profit is greatest. And where R'(x) = C'(x), the slopes of the functions’ tangent
lines are equal. So if you were to draw tangent lines to R (x ) and C ( x) where
the gap between the two is greatest, these tangents would be parallel. Right
about now you're probably thinking something like — Such symmelry, such
simple elegance, such beauty! Verily, the mathematics muse seduces the heart

as much as the mind, Yeah, it's nice all right, but let’s not get carried away.
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In this part . . .

ntegration is fancy addition — very fancy. It's the

process of taking a shape whose area you can't directly
determine, cutting it up into tiny bits whose areas you can
determine, and then adding up all the bits to get the area
of the whole.

What about infinite series? Think about this for a second:
If you start 1 yard away from a wall then walk halfway
there, then halfway again, then halfway again (I'll bet
you've heard this one), how long will it take you to get to
the wall? Answer: it depends. There are an infinite number
of steps in this process, so, if each step takes, say, one
second, you'll never get there. If, however, you can main-
tain a constant speed of 1 yard per second, not stopping or
slowing down at the end of each step, you'll still take an
infinite number of steps, but you'll get to the wall in 1
second flat! This surprising result of adding up an infinite
number of numbers, but getting a finite sum is what the
last chapter of Part V is all about: It's a topic full of bizarre
paradoxes.
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Sncc you're still reading this book, [ presume that means you survived
differentiation (Chapters 9 through 12). Now you begin the second major
topic in calculus — integration. Just as two simple ideas lie at the heart of
differentiation — rate (like miles per hour) and the steepness or slope of a
curve — integration can also be understood in terms of two simple ideas —
adding up small pieces of something and the area under a curve. In this
chapter, I introduce you to these two fundamental concepts.

Integration: Just Fancy Addition

Consider the lamp in Figure 13-1. Say you want to determine the volume of
the lamp’s base. Why would you want to do that? Beats me. Anyway, a for-
mula for the volume of such a weird shape doesn't exist, so you can’t calcu-
late the volume directly.
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[P
Figure 13-1:
A lamp with

a curvy

base.
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Figure 13-2:
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slices.
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You can, however, calculate the volume with integration. Imagine that the
base is cut up into thin, horizontal slices like in Figure 13-2.

Can you see that each slice is shaped like a thin pancake? Now, because there
is a formula for the volume of a pancake, you can determine the total volume
of the base by simply calculating the volume of each pancake-shaped slice
and then adding up the volumes. That's integration in a nutshell,

But, of course, if that's all there was to integration, there wouldn’t be such a
fuss about it — certainly not enough to vault Newton, Leibnitz, and the rest
of the big hitters into the mathematics hall of fame. What makes integration
one of the great achievements in the history of mathematics is that — to con-
tinue with the lamp example — it gives you the exact volume of the lamp's
base by sort of cutting it into an infinite number of infinitely thin slices. Now
that is something. If you cut the lamp into less than an infinite number of
slices, you can get only a very good approximation of the volume — not the
exact answer — because each pancake-shaped slice will have a weird, curved
edge which would cause a small error.

Integration has an elegant symbol: f . You've probably seen it before —
maybe in one of those cartoons with some Einstein guy in front of a black-
board filled with indecipherable gobbledygook. Soon, this will be you. That's
right — you'll be filling up pages in your notebook with equations containing
the integration symbol. Onlookers will be amazed and envious,
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Chapter 13: Intro to Integration and Approximating Area

You can think of the integration symbol as just an elongated S for “sum up.”
S0, for our lamp problem, you can write

op
{ dL=1L
Tt

where dI. means a little bit of the lamp — actually an infinitely small piece.
So the equation just means that if you sum up all the little pieces of the lamp
from the bottom to the top, the result is L, the volume of the whole lamp.

This is a bit oversimplified — I can hear the siren of the math police now — but
it's a good way to think about integration. By the way, thinking of dL as a little
or infinitesimal piece of L is an idea you saw before with differentiation (see
Chapter 9), where the derivative or slope, %x_y—, is equal to the ratio of a little bit
of y (Ay) to a little bit of x (Ax), as you shrink the slope stair step down to an
infinitesimal size — see Figure 13-3 (and check out Figure 9-12). In other words,

d'
as Ax approaches zero, % =2

flx)

Ay=rise
M/" Ax= dx run

. . dy _ alittle bit of riss
In the limit, dx ~ alittle bit of run

So, whenever you see something like

1]
f little piece of mumbo jumbo

it just means that you add up all the little pieces of the mumbo jumbo from
a to b to get the total of all of the mumbo jumbo from a to b. Or you might see
something like

b= 2

f little piece of distance

=0

which means to add up the little pieces of distance traveled between 0 and 20
seconds to get the total distance traveled during that time span.

To sum up — that's a pun! — the mathematical expression to the right of the
integration symbol always stands for a little bit of something, and integrating

213
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such an expression means to add up all the little pieces between some start-
ing point and some ending point.

Finding the Area under a Curve

e
Figure 13-4:
Integrating

flx) fram
ato b
means
finding the
area under
the curve
between a
and b,

As | discuss in Chapter 9, the most fundamental meaning of a derivative is
that it's a rate, a this per that like miles per hour, and that when you graph the
this as a function of the that (like miles as a function of hours), the derivative
becomes the slope of the function. In other words, the derivative is a rate,
which on a graph appears as a slope.

It sort of works the same way with integration. The most fundamental mean-
ing of integration is to add up. And when you depict integration on a graph,
you can see the adding up process as a summing up of little bits of area to
arrive at the total area under a curve. Consider Figure 13-4,

Add up all

the thin strips

like this one
Y
A i
/ﬁf

[T
- e > x
] i b

Y

The shaded area in Figure 13-4 can be calculated with the following integral:

j?f(x)dx

Look at the thin rectangle in Figure 13-4. It has a height of f (x) and a width
of dx (a little bit of x), so its area (fength times width, of course) is given by
f(x) dx. The above integral tells you to add up the areas of all the narrow
rectangular strips between o and b under the curve f (x). As the strips get
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Figure 13-5:
This shaded
area givas
you the
volume of
the base of
the lamp in
Figure 13-1.
[ maeir s

narrower and narrower, you gel a better and better estimate of the area. The
power of integration lies in the fact that it gives you the exact area by sort of
adding up an infinite number of infinitely thin rectangles.

Regardless of what the tiny bits are that you’re adding up — they could be little
bits of distance or volume or energy (or just area) — you can represent the
summation as an adding up of the areas of thin rectangular strips under a
curve. If the units on both the x and y axes are, say, feet, then each thin rectan-
gle measures so many feet by so many feet, and its area — length times width —
is some number of square feet. In this case, the total area of all the rectangles
gives you the area under the curve between a and b (though not to scale).

If, on the other hand, the units on the x-axis are hours (f) and the y-axis is
labeled in miles per hour, then, because rate times tirme equals distance, the area
of each rectangle represents an amount of distance and the total area gives you
the total distance traveled during the given time interval. Or if the x-axis is
labeled in hours () and the y-axis in kilowatts of electrical power — in which
case the curve, f(f), gives power usage as a function of time — then the area of
each rectangular strip (kilowaits times hours) represents a number of kilowait-
lours of energy. In that case, the total area under the curve gives you the total
number of kilowatt-hours of energy consumption between two points in time.

Figure 13-5 shows how you would do the lamp volume problem — from earlier
in this chapter — by adding up areas. In this graph, the function A(x) gives
the cross-sectional area of a thin pancake slice of the lamp as a function of
its height measured from the bottom of the lamp. So this time, the fi-axis is
labeled in inches (that’s / as in Aeight from the bottom of the lamp), and the
y-axis is labeled in square inches, and thus each thin rectangle has a width
measured in inches and a height measured in square inches. Its area, there-
fore, represents inches times square inches, or cubic inches of volume.

¥
!squar& Alh)
inches)

- ' ——p
0 5 10 15

{inches)

The area of the thin rectangle in Figure 13-5 represents the volume of the thin
pancake slice of the lamp 5 inches up from the bottom of the base. The total
shaded area and thus the volume of the lamp’s base is given by the following
integral:
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Volume = cross—sectional areax thichness
]

=

_‘r‘-'_'-
i
/ e
i —_—
e

v= [A(h)dn
1]

which means that you add up the volumes of all the thin pancake slices from
0 to 15 inches (that is, from the bottom to the top of the lamp’s base), each
slice having a volume given by A(f) (its cross-seclional area) times dh (its
height or thickness).

Dealing with Negative Area

In the examples involving volume, distance, and energy (from the previous
section), you're always adding up positive bits of something. This is usually
the case with practical problems because you can't, for instance, have a neg-
ative volume of water or use a negative number of kilowatt-hours of energy.
However, you will sometimes integrate functions that go into the negatives —
that's below the x-axis. Here are a few pointers for when that happens.

When using integration to calculate area, area below the x-axis counts as nega-

live area. r:I'h-:! total area between a and b for some curve f ( x ) — given by the

integral ff {x) dx — is really a net area where the total area below the x-axis
(and above the curve) is subtracted from the total area above the x-axis (and
below the curve).

Think of the x-axis as ground level, areas above the x-axis as mounds of earth,
and areas below the x-axis as holes in the ground. The net area then repre-

sents the amount of earth left above ground level after you use the earth in
the mounds to fill in the holes. (This net can be a negative amount.)

In Chapter 16, I show you how to calculate the total area between a curve
and the x-axis where all area sections are counted as positive.

Okay, enough of this introductory stuff. In the next section, you actually
calculate some areas.

Approximating Area

Before explaining how to calculate exact areas, | want to show you how to
approximale areas. The approximation method is useful not only because it
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Figure 13-6:
The exact
area under
fx)=x2+1
between 0
and 3 (left)
is approxi-
mated by
the area

of three
rectangles
{right).
=TT

lays the groundwork for the exact method — integration — but because for
some curves, integration is impossible, and an approximation of area is the
best you can do.

Approximating area with left sums

Say you want the exact area under the curve f (x) = x*+ 1 between 0 and 3.
See the shaded area on the graph on the left in Figure 13-6.

O e "TI'TEI'TE

Rect. 1 Rect.?2 Rect. 3

First, you get a rough estimate of the area by drawing three rectangles under
the curve, as shown on the right in Figure 13-6, and then determining the sum
of their areas.

The rectangles In Figure 13-6 represent a so-called left sum because the upper
left corner of each rectangle touches the curve, Each rectangle has a width

of 1 and the height of each is given by the height of the function at the rectan-
gle's left edge. So, rectangle number 1 has a height of £ (0) = 0°+ 1 = 1; its area
(length x width or height x width) is thus 1 x 1, or 1. Rectangle 2 has a height
of f(1)=1"+1=2 soits area is 2 x 1, or 2, And rectangle 3 has a height of
f(2)=2"+1=5 soits area is 5 x 1, or 5. Adding these three areas gives you
atotalof 1 + 2 + 5, or 8. You can see that this is an underestimate of the total
area under the curve because of the three gaps between the rectangles and
the curve shown in Figure 13-6,

For a better estimate, double the number of rectangles to six. Figure 13-7
shows six “left” rectangles under the curve and also how the six rectangles
begin to fill up the three gaps you see in Figure 13-6.
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Figure 13-7:
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See the three small shaded rectangles in the graph on the right in Figure 13-7?
They sit on top of the three rectangles from Figure 13-6, and they represent how
much the area estimate has improved by using six rectangles instead of three,

Now total up the areas of the six rectangles. Each has a width of 0.5 and the
heights are £ (0), £(0.5), (1), f(1.5), and so on. I'll spare you the arithmetic.
Here's the total: 0.5 + 0.625 + 1 + 1.625 + 2.5 + 3.625 = 9.875. This is a better
estimate, but it's still an underestimate because of the six small gaps you
can see on the left graph in Figure 13-7.

Table 13-1 shows the area estimates given by 3, 6, 12, 24, 48, 96, 192, and 384

rectangles. You don’t have to double the number of rectangles each time like
I've done here. You can use any number of rectangles you want. | just like the
doubling scheme because, with each doubling, the gaps are plugged up more
and more in the way shown in Figure 13-7.

Table 13-1 Estimates of the Area under f(x)= x*+1 Given by

Increasing Numbers of “Left” Rectangles

Mumber of Area

Rectangles Estimate
3 g

B 9.875

12 ~10.906

24 ~11.445

L ~11.721

96 ~11.860

192 ~11.930

384 ~11,965
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Any guesses as to where the estimates in Table 13-1 are headed? Looks like 12
to me.

Here's the fancy-pants formula for a left-rectangle sum:
The Left Rcf:tangle;' Rule: You can approximate the exact area under a curve

between ¢ and b, )‘-f () dx, with a sum of left rectangles given by the following

formula. In general, the more rectangles, the better the estimate.

_J'_,,:b;a[f{xu}-+-f(x1}+fl:.7i'>:l'l' ........... +F (X, L)]

Where n is the number of rectangles, bT“ is the width of each rectangle,
and the function values are the heights of the rectangles.

I better explain this formula a bit. Look back to the six rectangles shown in
Figure 13-7. The width of each rectangle equals the length of the total span
from 0 to 3 (which of course is 3 - 0, or 3) divided by the number of rectan-

gles, 6. That's what the b T 4 does in the formula,

Now, what about those xs with the subscripts? The x-coordinate of the left edge
of rectangle 1 in Figure 13-7 is called x,, the right edge of rectangle 1 (which is
the same as the left edge of rectangle 2) is at x, the right edge of rectangle 2 is
at x;, the right edge of rectangle 3 is at x;, and so on all the way up to the right
edge of rectangle 6, which is at xs. For the six rectangles in Figure 13-7, xuis 0,
x1is 0.5, xz1s 1, Xy is 1.5, x4 is 2, x5 is 2.5, and x; is 3. The heights of the six left
rectangles in Figure 13-7 occur at their left edges, which are at 0, 0.5, 1, 1.5, 2,
and 2.5 — that's x, through x;. You don't use the right edge of the last rectan-
gle, x, in a left sum. That's why the list of function values in the formula stops
at x, - . This all becomes clearer — cross your fingers — when you look at the
formula for right rectangles in the next section.

Here's how to use the formula for the six rectangles in Figure 13-7;
L= %p{xu) W F (1) + F () + £ (x3)  F (0) + £ (x5)
=2 [F(0)+F(0.5) +F(1) +F (15) +£(2) + £(25)]
=L (1+1.25+2+ 32545 +7.25)
= (19.75)

= 0.875
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Figure 13-8:
Three right
rectangles
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Note that had I distributed the width of ¥ to each of the heights alter the
third line in the above solution, you would have seen the sum of the areas of
the rectangles — which you saw one page back. The formula just uses the
shortcut of first adding up the heights and then multiplying by the width.

Whether approximating areas or finding exact areas, areas below the x-axis
count as negative. See section “Dealing with Negative Areas” earlier in this
chapter.

Approximating area with right sums

Okay, now estimate the same area under f (x) = x*+ 1 from 0 to 3 with right
rectangles. This method works just like the left sum method except that

each rectangle is drawn so that its right upper corner touches the curve.
See Figure 13-8.

14
A
10
B..
51 (2,5)
(1,2) Eauitinies)
T 1 T 2 T 3
Y
Rect.1 Rect2 Rect. 3

The heights of the three rectangles in Figure 13-8 are given by the function
values at their right edges: f (1) =2, f(2) =5, and f (3) = 10, Each rectangle has
a width of 1, so the areas are 2, 5, and 10, which total 17, You don't have to be
a rocket scientist to see that this time you get an overestimate of the actual
area under the curve, as opposed to the underestimate that you get with

the left-rectangle method | detail in the previous section (more on that in a
minute). Table 13-2 shows the improving estimates you get with more and
more right rectangles,
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Table 13-2  Estimates of the Area under f (x) = x*+ 1 Given by
Increasing Numbers of “Right” Rectangles

Number of Area

_Rectangles Estimate
35l 17

6 14.375

12 ~13.156

24 ~12.570

18 ~12.283

96 ~12.141

192 ~12.070

384 ~12,035

Looks like these estimates are also headed toward 12. Here's the formula for
a right rectangle sum.

J
a\t“?.; qf"o _
G‘ ?3 between a and b, j f (x)dx, with a sum of right rectangles given by the follow-
i

The Right Trlmu.;]ef Rule: You can approximate the exact area under a curve

WTH gy

ing formula. In general, the more rectangles, the better the estimate.

Re= 258 [F (1) + £ (x2) 4 F (33) + oo f (xn)]

b-a

where i is the number of rectangles, is the width of each rectangle,
and the [unction values are the heights of the rectangles.

Now if you compare this formula to the one for a left rectangle sum (in the
previous “"Approximating area with left sums"” section), you get the complete
picture about those subscripts. The two formulas are the same except for
one thing. Look at the sums of the function values in both formulas. The right
sum formula has one value, f (x,), that the left sum formula doesn’t have, and
the left sum formula has one value, f ( x,), that the right sum formula doesn’t
have. All the function values between those two appear in both formulas. You
can get a better handle on this by comparing the three lelt rectangles from
Figure 13-6 to the three right rectangles from Figure 13-8. Their areas and
totals, which we earlier calculated, are

Three left rectangles: 1+2+ 5 =8
Three right rectangles: 2 +5+10 = 17
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The sums of the areas are Lhe same except for the left-most left rectangle and
the right-most right rectangle. Both sums include the rectangles with areas 2
and 5. If you look at how the rectangles are constructed, you can see that the
second and third rectangles in Figure 13-6 are the same as the first and
second rectangles in Figure 13-8.

One last thing on this. The difference between the right rectangle total area
(17) and the left rectangle total area (8) — that's 17 minus 8, or 9, in case you
love calculus but don't have the basic subtraction thing down yet — comes
from the difference between the areas of the two “end” rectangles just dis-
cussed — 10 minus 1 is also 9. All the other rectangles are a wash, no matter
how many rectangles you have.

Approximating area with midpoint sums

A third way to approximate areas with rectangles is to make each rectangle
cross the curve at the midpoint of its top side. A midpoint sum is a much
better estimate of area than either a left or a right sum. Figure 13-9 shows
why.
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You can see in Figure 13-9 that the part of each rectangle that's above the
curve looks about the same size as the gap between the rectangle and the
curve. A midpoint sum produces such a good estimate because these two
errors roughly cancel out each other.
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For the three rectangles in Figure 13-9, the widths are 1 and the heights are
£(0.5)=1.25,F(1.5) = 3.25, and F (2.5) = 7.25, The total area comes to 11.75.
Table 13-3 lists the midpoint sums for the same number of rectangles in
Tables 13-1 and 13-2.

Table 13-3  Estimates of the Area under f (x) = x*+1 Given by
Increasing Numbers of “Midpoint™ Rectangles

Numberof |  Area
Rectlangles Estimate
3 11.75

i} 11.9375

12 ~11.8845

24 ~11.8961

48 ~11.9990

96 ~11.8998

192 ~11.9999
384 ~11.99998

If you had any doubts that the left and right sums in Tables 13-1 and 13-2
were heading to 12, Table 13-3 should dispel them. Yes, in fact, the exact area
is 12 — sorry to give away the ending. And to see how much faster the mid-
point approximations approach the exact answer of 12 than the left or right
approximations, compare the three tables. The error with 6 midpoint rectan-
gles is about the same as the error with 192 left or right rectangles! Here's the
mumbo jumboao. .

5 :_%0 The Midpoint R“'ei You can approximate the exact area under a curve

x/ X . : - . q
=+ between @ and b, | f(x)dx, with a sum of midpoint rectangles given by the
= e *

following formula. In general, the more rectangles, the better the estimate.

M= 2 “lf(’f"gx']+ 160 oo BTG <o P +f(Xepte)

bh=a

where n is the number of rectangles, is the width of each rectangle, and
the function values are the heights of the rectangles.

All three sums — left, right, and midpoint — are called Riemarnn sums after
the German mathematician G. F. B. Riemann (1826-66). Basically, any approxi-
mating sum made up of rectangles is a Riemann sum, including weird sums
consisting of rectangles of unequal width. Luckily, you won’t have to deal
with those in this book or your calculus course,




224 Part V: Integration and Infinite Series

The left, right, and midpoint sums in Tables 13-1, 13-2, and 13-3 are all head-
ing toward 12, and if you could slice up the area into an infinite number of
rectangles, you'd get the exact area of 12. But I'm getting ahead of myself.

Getting Fancy with Summation Notation

Belore | get to the formal definition of the definite integral — that'’s the incred-
ible calculus tool that sort of cuts up an area into an infinite number of rec-
tangles and thereby gives you the exact area — there's one more thing to take
care ol: summation notation.

Summing up the basics

For adding up long series of numbers like the rectangle areas in a left, right,
or midpoint sum, summation or sigma notation comes in handy. Here's how it
works. Say you wanted to add up the first 100 multiples of 5 — that's from 5
to 500. You could write out the sum like this:

5+10+15+20+25+ ... + 490 + 495 + 500

But with sigma notation (sigma, 2 . is the 18th letter of the Greek alphabet —
well, duh) the sum is much more condensed and efficient, and, let's be honest,
it looks pretty cool:

(1]
Pl
i=1

This notation just tells you to plug 1 in for the f in 5f, then plug 2 into the |
in bi, then 3, then 4, and so on all the way up to 100. Then you add up the
results. So that's 5 x 1 plus 5 x 2 plus 5 x 3, and so on, up to 5 x 100. This is
the same thing as writing out the sum the long way. “B"y the way, the letter i
has no significance. You can write the sum with a j, 2.5/, or any other letter

il

you like,

Here's one more. If you want to add up 10*+ 11% 4+ 12%+ .......... +29% + 307 you
can write the sum with sigma notation as follows:

Al
2K
k=10

There's really nothing to it.
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Writing Riemann sums
with sigma notation

You can use sigma notation to write out the right-rectangle sum for the curve
x*+ 1from the “Approximating Area” sections, By the way, you don't need
sigma notation for the math that follows. It's just a “convenience” — yeah,
right. Cross your fingers and hope that your teacher decides not to cover the
following. It gets pretty hairy.

Recall the formula for a right sum from the earlier “Approximating area with
right sums” section:

Ro= B39 7000 ) + £Gea) + £ + oot £ ()]
Here's the same formula written with sigma notation:

Ri= 3, .’(x,—}-(h;”)l

Now work this out for the six right rectangles in Figure 13-10.

You're figuring the area under x*+ 1 between 0 and 3 with six rectangles, so

the width of each, b}}”, is EO, or % or % So now you've got

)

10+

Figure 13-10:
Six right
rectangles
approxi- |
mate the =1 I i
area under — - =X

S A1 A1LEA 2 A254 3
flx)=x"+1 f
elween 0 I T
and 3.

Rl R2 R3 R4 R5 R6

P = o (=]
. :
.
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Now, because the width of each rectangle is % , the right edges of the six rectan-
gles fall on the first six multiples of % : 0.5, 1, 1.5, 2, 2.5, and 3. These numbers
are the x-coordinates of the six polnts x: through xu; they can be generated by
the expression % i, where i equals 1 through 6. You can check that this works by
plugging 1 in for i in %f, then 2, then 3, up to 6. So now you can replace the x; in
the formula with 5 I, giving you

Rﬁ=2[f(%f)-%

Our function, f(x), is x*-+ 1sof (% .!') = (

|
i ) + 1, and so now you can write

2
((32)+1)3]
If you plug 1 into i, then 2, then 3, and so on up to 6 and do the math, you get

the sum of the areas of the rectangles in Figure 13-10. This sigma notation is
just a fancy way of writing the sum of the six rectangles.

o |—

Re=D)

Are we having fun? Hold on, it gets worse -— sorry. Now you're going to write
out the general sum for an unknown number (7) of right rectangles. The total
span of the area in question is 3, right? You divide this span by the number of
rectangles to get the width of each rectangle. With 6 rectangles, the width of
each is l.—?;; with n rectangles, the width of each is 7. And the right edges of the
n rectangles are generated by 4 (, for { equals 1 through n. That gives you

Or, because f (x) =x*+1,
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For this last step, you pull the % and the% through the summation signs —
you're allowed to pull out anything except for a function of i, the so-called
index of summation. Also, the second summation in the last step has just a 1
alter it and no i, So there's nowhere to plug in the values of i. This situation
may seem a bit weird, but all you do is add up n 1s, which equals n (I do this
in the next step below).

You've now arrived at a critical step. With a sleight of hand, you're going to
turn the previous Riemann sum into a formula in terms of n. This formula is
what you use to obtain the exact area under the curve in the next section,
appropriately named “Finding Exact Area with the Definite Integral.”

Now, as almost no one knows, the sum of the first n square numbers,

2, a2, 0t 2 onam+ D2+ 1) . : i
124214+ 3%+ ...+ 1", equals e (By the way, this 6 has nothing
to do with the fact that we used 6 rqctangles a couple pages back.) So, you

ean substitute that expression for Z i*in the lasnt line of the sigma notation

solution, and at the same time substitute n for D)1
=1

27 n(n+1l)(2n+l) 3
L tn

R.= i i n
i 3 a
= % (% + % + '%) +3 (OK, I admit it, I didn't show all of my work.)
T ol
=9+5 +57 +3
2T 29
12+ n + o

The end, Finally! This is the formula for the area of n right rectangles between
0 and 3 under the function x?+ 1. You can use this formula to produce the
results given in Table 13-2, But once you've got such a formula, it'd be kind of
pointless to produce a table of approximate areas, because you can use the
formula to determine the exact area. And it's a snap. | get to that in a minute
in the next section,

But first, here are the formulas for n left rectangles and n midpoint rectangles
between 0 and 3 under the function ¥*+ 1. These formulas generate the area
approximations in Tables 13-1 and 13-3. The algebra for deriving these formulas
1s even worse than what you did for the right rectangle formula, so 1 decided to
skip it. Do you mind? | didn't think so.

_q9-21, 2
Ly=12-50+ 5

e
M,=12 A

And now, what you've all been waiting for...

R
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Finding Exact Area with
the Deﬂmte Integral

&TH A,

X
&

Having laid (1ain?) all the necessary groundwork, you're linally ready to move
on to determining exact areas — which is the whole point of integration. You
don’t need calculus to do all the approximation stuff you just did.

As you saw with the left, right, and midpoint rectangles in the “Approximating
Area” sections, the more rectangles you have, the better the approximation.
So, “all” you have to do to get the exact area under a curve is to use an infinite
number of rectangles. Now, you can't really use an infinite number of rectan-
gles, but with the fantastic invention of limits, this is sort of what happens.
Here's the definition of the definite integral that's used to compute exact areas.

The Definite Integral (“simple” definition): The exact area under a curve
between a and b is given by the definite integral, which is defined as follows:

f{x) (b—lu)

Is that a thing of beauty or what? The summation above is identical to the for-
mula for n right rectangles, R, that I give a few pages back. The only differ-
ence here is that you take the limit of that formula as the number of
rectangles approaches infinity (oo).

,‘f(x)dx—llnlz

This definition of the definite integral is the simple version based on the right
rectangle formula. 1 give you the real-McCoy definition later, but because all
Riemann sums have the same limit — in other words, it doesn’t matter what
type of rectangles you use — you might as well use the right-rectangle defini-
tion. It's the least complicated and it'll always suffice.

Let’s have a drum roll, Here, finally, is the exact area under our old friend
x’+ 1between 0 and 3:

J{‘J[xﬂ-q- l)dx—-nlipli f{xj.)_(b%)

-qu (12 + 2.;: %) (This is what we got in the
“Writing Riemann sumns
with sigma notation” sec-
tion after all those steps.)

=13 b el

20 2.
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i)
=12+ &5+
=12 4+ 0+ 0 (Remember, in a limit problem, any

number divided by infinity equals
ZEr0.)

=12
Big surprise.

This result is pretty amazing if you think about it. Using the limit process, you
get an exact answer of 12 — which is sort of like 12,00000000 . . . to an infinite
number of decimal places — for the area under the smooth, curving function
x*+ 1, based on the areas of flat-topped rectangles that run along the curve in
a jagged, saw-tooth fashion. Let me guess — the sheer power of this mathe-
matical beauty is bringing tears to your eyes,

Finding the exact area of 12 by using the limit of a Riemann sum is a lot of
work (remember, you first had to determine the formula for n right rectan-
gles). This complicated method of integration is comparable to determining a
derivative the hard way by using the formal definition that’s based on the dif-
ference quotient (if you've forgotten and care to remember, see Chapter 9).
And just as you stopped using the formal definition of the derivative after you
learned the differentiation shortcuts, you won't have to use the formal defini-
tion of the definite integral based on a Riemann sum after you learn the short-
cut methods in Chapters 14 and 15 — except, that is, for your final exam.,

Because the limit of all Riemann sums is the same, the limits at infinity of n
left rectangles and n midpoint rectangles — for x* + 1 between 0 and 3 —
should give us the same result as the limit of n right rectangles, which they
do. The expressions after the following limit symbols are the formulas for n
left rectangles and n midpoint rectangles that appear at the end of the
“Writing Riemann sums with sigma notation” section earlier in the chapter.
Here's the left rectangle limit;

3

";{xz-r- I)rfx—-Lm-—ii!n(IZ- 27 I--Ei-)

2n " 207,
A s RO
=12 2-w+2.m=
:12—%53+%
=12=0+0
=12

And here's the midpoint rectangle limit:
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J{'.(xhi- 1)dx:M“_:"|in(12_%)

2]

=12—ﬁ
=10-2
=12-0
=12

If you're somewhat incredulous that these limits actually give you the exact
area under x*+ | between 0 and 3, you're not alone. After all, in these limits,
as in all limit problems, the x-number (ec in this example) is only approached;
it’s never actually reachec. And on top of that, what would it mean to reach
infinity? You can't do it. And regardless of how many rectangles you have, you
always have that jagged, saw-tooth edge. So how can such a method give you
the exact area?

Look at it this way. You can tell from Figures 13-6 and 13-7 that the sum of the
areas of left rectangles, regardless of their number, will always be an underes-
timate (this is the case for functions that are increasing over the span in
question). And from Figure 13-8, you can see that the sum of the areas of right
rectangles, regardless of how many you have, will always be an overestinate
(for increasing functions). 5o, because the limits at infinity of the underesti-
mate and the overestimate are both equal to 12, that must be the exact area.
(A similar argument works for decreasing functions.)

SMBER Not only are the limits at infinity of left, right, and midpoint rectangles the
@ S same, the limit of any Riemann sum also gives you the same answer. You can
(l | ) have a series of rectangles with unequal widths; you can have a mix of left,

L right, and midpoint rectangles; or you can construct the rectangles so they

e touch the curve somewhere other than at their left or right upper corners or
at the midpoints of their top sides. The only thing that matters is that, in the
limit, the width of all the rectangles tends to zero. This brings us Lo the fol-
lowing totally extreme, down-and-dirly integration mumbo jumbo that takes
all these possibilities into account.

0 JUpy
@“3- -"‘1&0
% - X
#

= =
E@? '

The Definite Integral (real-McCoy definition): The definite integral from a to
&
b, ff(x}d.kq is the number to which all Riemann sums tend as the number of

rectangles approaches infinity and as the width of all rectangles tend to zero:

L n
j f(x)dx=1lim 2} (c) Axi
& [ Sl 1
where Ax: is the width of the ith rectangle and ¢; is the x-coordinate of the
point where the ith rectangle touches f (x).
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Approximating Area with the Trapezoid
Rule and Simpson’s Rule

Figura 13-11:
Three
trapezoids
approxi-
mate tha
area under
fx)=x'+1
between 0
and 3.

The exact area method doesn’t work for certain types of functions. It's beyond
the scope of this book to explain why this s the case or exactly what these
functions are like, so just take my word for it. Following are two more ways to
estimate area — in addition to using left, right, and midpoint rectangles — that
may come in handy in case you get one of these uncooperative functions.

The trapezoid rule

With the trapezoid rule, instead of approximating area with rectangles, you
do it with — can you guess? — trapezoids. See Figure 13-11.

A

—a
.

Trap. 1 Trap. 2 Trap. 3

Because of the way trapezoids hug the curve, they give you a much better
area estimate than either left or right rectangles, And it turns out that a trape-
zoid approximation is the average of the left rectangle and right rectangle
approximations. Can you see why? (Hint: The area of a trapezoid — say trape-
zoid 2 in Figure 13-11— is the average of the areas of the two corresponding
rectangles in the left and right sums, namely, rectangle number 2 in Figure
13-6 and rectangle 2 in Figure 13-8.)

231
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P

Table 13-4 lists the trapezoid approximations for the area under x* + 1
between () and 3.

Table 13-4 Estimates of the Area under f (x)=x"+1
between 0 and 3 Given by Increasing
Numbers of Trapezoids

Number of Araa
Trapezoids Estimata
: 3 125
6 12.125
12 ~12.031
24 ~12.008
43 ~12.002
96 ~12.0004
192 ~12,0001
384 ~12,00003

From the look of Figure 13-11, you might expect a trapezoid approximation to
be better than a midpoint estimate, but in fact, as a general rule, midpoint
estimates are about twice as good as trapezoid estimates. You can confirm
this by comparing Tables 13-3 and 13-4. For instance, Table 13-3 lists an area
estimate of 11.9990 for 48 midpoint rectangles. This differs from the exact
area of 12 by 0.001. The area estimate with 48 trapezoids given in Table 13-4,
namely 12.002, differs from 12 by twice as much.

If you've already worked out the left and right rectangle approximations for a
particular function and a certain number of rectangles, you can just average
them to get the corresponding trapezoid estimate. If not, here's the formula:

The Trapezoid Rule: You can approximale the exact area under a curve

]
between a and b, j f(x)dx, with a sum of trapezolds given by the following
formula. In generﬁ'l, the more trapezoids, the better the estimate.

T,= 8

L[ F (o) +2F (x0) + 2 (o62) 4+ 2F (3) + wovvers + 2 (2 1) + £ (x4)]

where n is the number of trapezolds, x» equals a, and x: through x. are the
equally-spaced x-coordinates of the right edges of trapezoids 1 through n.
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Figure 13-12:
Three
curvy-

topped

“trapezoids”

approxi-
mate the
area under
g(x)
between 1
and 4.

Even though the formal definition of the definite integral is based on the sum
of an infinite number of rectangles, | prefer to think of integration as the limit
of the trapezoid rule at infinity, The further you zoom in on a curve, the
straighter it gets. When you use a greater and greater number of trapezoids
and then zoom in on where the trapezoids touch the curve, the tops of the
trapezoids get closer and closer to the curve. If you zoom in “Infinitely,” the
tops of the “infinitely many” trapezoids become the curve and, thus, the sum
of their areas gives you the exact area under the curve. This is a good way to
think about why integration produces the exact area — and it makes sense
conceptually — but it’s not actually done this way.

Simpson’s rule — that’s Thomas
(1710-1761), not Homer (1987-)

Now I really get fancy and draw shapes that are sort of like trapezoids except
that instead of having slanting tops, they have curved, parabolic tops. See
Figure 13-12,

Note that with Simpson’s rule each “trapezoid” spans two intervals instead
of one; in other words, “trapezoid” number 1 goes from xq to x:, “trapezoid” 2
goes from x: to x4, and so on, Because of this, the total span must always be
divided into an even number of intervals.

gl

i = e e

LI T TR "R .
L

Trap®1  “Trap®2  “Trap."3
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Simpson’s rule is by far the most accurate approximation method discussed
in this chapter. In fact, it gives the exact area for any pelynomial function of
degree three or less. In general, Simpson's rule gives a much better estimate
than either the midpoint rule or the trapezoid rule.

A Simpson’s rule sum is sort of an average of a midpoint sum and a trapezoid
sum, except that you use the midpoint sum twice in the average. So, if you
already have the midpoint sum and the trapezoid sum for some number of
rectangles/trapezoids, you can obtain the Simpson’s rule approximation with
the following simple average:

= MatMat Ty

Note the subscript of 2r. This means that if you use, say, M» and T, you get
a result for Se. But Ss, which has six intervals, has three curvy “trapezoids”
because each spans two intervals. Thus, the above formula always involves
the same number of rectangles, trapezoids, and Simpson rule “trapezoids.”

If you don't have the midpoint and trapezoid sums for the above shortcut,
you can use the following formula for Simpson's rule.

Simpson’ﬁ Rule: You can approximate the exact area under a curve between
aand b, j f (x) dx, with a sum of parabola-topped “trapezoids” given by the

following formula. In general, the more “trapezoids,” the better the estimate.
sﬁi’;;"‘l[f (x0) +AF (20) + 2F (32) + 4F (X3) +2F (X4) + vese + 4F (20 1) +F ()]

where n is twice the number of “trapezoids” and x, through x, are the n + 1
evenly spaced points from a to b.



Chapter 14

Integration: It's Backwards
Differentiation

In Tfﬂs C&apter

- Antidifferentiating — putting 'er in reverse
- Using the area function
j= Getting familiar with the Fundamental Theorem of Calculus
Finding antiderivatives

Figuring exact areas the easy way

‘ hapter 13 shows you the hard way to calculate the area under a function
using the formal definition of integration — the limit of a Riemann sum.
In this chapter, I do it the easy way, taking advantage of one of the most

important and amazing discoveries in mathematics — that integration is just
differentiation in reverse.

Antidifferentiation — That’s
Differentiation in Reverse

Antidifferentiation is just differentiation backwards. The derivative of sinx is
cosx, so the antiderivative of cosx is sinx; the derivative of x* is 3x*, so the
antiderivative of 3x” is x” — you just go backwards. There's a bit more to it,
but that's the basic idea, Later in this chapter, | show you how to integrate
(find areas) by using antiderivatives. This is much easier than finding areas
with the Riemann sum technique.

Now consider x* and its derivative 3x* again, The derivative of x” + 10is also 3x7,
as is the derivative of x* - 5. Any function of the form x*+ C, where C is any

number, has a derivative of 3x*. So, every such function is an antiderivative
of 3x*,
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Figure 14-1:
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The Indefinite Integral: The indefinite integral of a function f (x), written as
[:" (x) dx, is the family of ail antiderivatives of the function. For example,
yecause the derivative of x* is 3x*, the indefinite integral of 3x” is x* + C, and
you write -

f&x"dxrx”+€

You probably recognize this integration symbol, f , from the discussion of

the definite integral in Chaptez;“l:'i. The definite integral symbol, however, con-
tains two little numbers like f that tell you to compute the area of a function
between those two numbers, called the limils of integration. The naked ver-
sion of the symbol, )‘ ‘ ,indicates an indefinite integral or an antiderivative.
This chapter is all about the intimate connection between these two symbols.
Figure 14-1 shows the family of antiderivatives of 3x*, namely x*+ C. Note that
this family of curves has an infinite number of curves. They go up and down

forever and are infinitely dense. The vertical gap of 2 units between each
curve in Figure 14-1 is just a visual aid.

Consider a few things about Figure 14-1. The top curve on the graph is X +6;
the one below it is x* + 4; the bottom one is ¥’ - 6. By the power rule, these
three functions, as well as all the others in this family of functions, have a
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derivative of 3x°. Now, consider the slope of each of the curves where x
equals 1 (see the tangent lines drawn on the curves). The derivative of each
curve is 3x* so when x equals 1, the slope of each curve is 3- 1% or 3. Thus,
all these little tangent lines are parallel. Next, notice that all the functions in
Figure 14-1 are identical except for being slid up or down (remember vertical
shifts from Chapter 5?). Because they differ only by a vertical shift, the steep-
ness at any x-value, like x=1, is the same for all the curves. That's why they all
have the same derivative and why all of them are antiderivatives of the same
function,

Vocabulary, Voshmabulary: What
Difference Does It Make?

In general, definitions and vocabulary are very important in mathematics,
and it's a good idea to use them correctly. But with the current topic, I'm
going to be a bit lazy about precise terminology, and [ hereby give you per-
mission to do so as well,

If you're a stickler, you should say that the indefinite integral of 3x* is x*+ C,
that x*+ C is the family or set of all antiderivatives of 3x* (you don’t say that
x*+ C is the antiderivative), and that x*+ 10, for Instance, is an antiderivative
of 3x*. And on a test, you should definitely write [ 3x*dx=x"+ C.If you leave
the C off, you'll likely lose some points. :

But, when discussing these matters, no one will care or be confused if you get
tired of saying C after every indefinite integral and just say, for example, that
the indefinite integral of 3x* is x*, and you can skip the indefinite and just say
that the infegral of 3x" is x". And instead of always talking about that family of
functions business, you can just say that the antiderivative of 3x* is x*+ C or
that the antiderivative of 3x* is x*. Everyone will know what you mean. It may
cost me my membership in the National Council of Teachers of Mathematics,
but at least occasionally, [ use this loose approach.

The Annoying Area Function

This is a tough one — gird your loins, Say you've got any old function, / {x).
Imagine that at some £value, call it s, you draw a fixed vertical line. See
Figure 14-2,



238

Part V: Integration and Infinite Series

e P e st
Figure 14-2:
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Then you take a moveable vertical line, starting at the same point, s (“s” is for
starting point), and drag it to the right. As you drag the line, you sweep out a
larger and larger area under the curve. This area is a function of x, the posi-
tion of the moving line. In symbols, you write

Ar(x) = ff(.')dl

Note that ¢ is the input variable in f (¢ ) instead of x because x is already taken —
it's the input variable in A ( x ). The subscript fin A, indicates that A, (x)is the
area function for the particular curve for £ (t). The dt is a little increment along
the -axis — actually an infinitesimally small increment.

Here's a simple example to make sure you've got a handle how an area function
works. By the way, don't feel bad if you find this extremely hard to grasp —
you've got lots of company. Say you've got the simple function, £ (¢) = 10—
that’s a horizontal line at y = 10. If you sweep out area beginning at s = 3, you
get the following area function:

Ar(x)= j:lﬂdf

You can see that the area swept out from 3 to 4 is 10 because, in dragging the
line from 3 to 4, you sweep out a rectangle with a width of 1 and a height of
10, which has an area of 1 times 10, or 10. See Figure 14-3,

S0, A/ (4), the area swept out as you hit 4, equals 10. A, (5) equals 20 because
when you drag the line to 5, you've swept out a rectangle with a width of 2 and
height of 10, which has an area of 2 times 10, or 20. A, (6) equals 30, and so on.

Now, imagine that you drag the line across at a rate of one unit per second. You
start at x = 3, and you hit 4 at 1 second, 5 at 2 seconds, 6 at 3 seconds, and so on.
How much area are you sweeping out per second? Ten square unils per second
because each second you sweep out another 1-by-10 rectangle. Notice — this is
huge — that because the width of each rectangle you sweep out is 1, the area of
each rectangle — which is given by height times width — is the same as its height
because anything times 1 equals itself. You see why this is huge in a minute,
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t.lll'dc&} Okay, are you sitting down? You've reached another one of the big Ah ha!

moments in the history of mathematics. Recall that a derivative is a rate. So,
because the rate at which the previous area function grows is 10 square units
per second, you can say its derivative equals 10. Thus, you can write —

4 4 (x)=10

Again, this just tells you that with each 1 unit increase in x, A; (the area func-
tion) goes up 10. Now here’s the critical thing: Notice that this rate or deriva-
tive of 10 is the same as the height of the original function f (¢) = 10 because
as you go across 1 unit, you sweep out a rectangle that's 1 by 10, which has
an area of 10, the height of the function,

This works for any function, not just horizontal lines. Look at the function
g (t) and its area function A, (x) that sweeps out area beginning at s = 2 in
Figure 14-4,

¥
L
—— /‘
Figure 14-4:
Areaunder 15
g(t)
between wl
2 and xis
swept out
bvl.'he 4 araa = 20—
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lineatx. ¢ 1
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You can see that A, (3)is about 20 because the area swept out between 2 and 3
has a width of 1 and the curved top of the “rectangle” has an average height
of about 20. So, during this interval, the rate of growth of A, (x) is about 20
square units per second. Between 3 and 4, you sweep out about 15 square
units of area because that's roughly the average height of g (¢) between 15
and 4. So, during second number two — the interval from x = 3 to x = 4 — the
rate of growth of A, (x)is about 15,

The rate of area being swept out under a curve by an area function at a given
x-value is equal to the height of the curve at that x-value.

[ realize I'm being a bit loose — in my discussion of Figure 14-4 — saying
things like “roughly” this and “average” that. But take my word for it, when
you do the math, it all works out. You see in Chapter 13 that the area under a
curve is approximated better and better when increasing numbers of thinner
and thinner rectangles are added up, and that the exact area is determined
by sort of adding up the areas of an infinite number of infinitely thin rectan-
gles. The same type of limit process is going on here — the areas and rates
that are “roughly” such-and-such become exact in the limit, The important
thing to focus on is that the rate of area being swept out under a curve is the
same as the height of the curve.

The Power and the Glory of the
Fundamental Theorem of Calculus

Sound the trumpets! Now that you've seen the connection between the rate
of growth of an area function and the height of the given curve, you're ready
for the Fundamental Theorem of Calculus — what some say is one of the
most important theorems in the history of mathematics.

The Fundamental Theorem of Calculus: Given an area function Ar that
sweeps out area under £ (1),

Ar(x)= f."'(.f}r.".-‘,

the rate at which area is being swept out is equal to the height of the original
function. So, because the rate is the derivative, the derivative of the area
function equals the original function:

L A (x)=F(x).
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Because A, (x) = }f.f(r}d:'. you can also write the above equation as follows:

]

d

iy .

Break out the smelling salts,

fr'l[r}dr=f{x]

Now, because the derivative of A/ (x)is f (x), A/ (x)is by definition an anti-

derivative of f (x). Check out how this works by returning to the simple fune-

tion from the previous section, £ (t) = 10, and its area function, A, (x) = f'll}dr.

5

According to the Fundamental Theorem, % Ar(x) = 10. Thus A, must be an

antiderivative of 10: in other words, A/ is a function whose derivative is 10.

Because any function of the form 10x + €, where Cis a number, has a deriva-

tive of 10, the antiderivative of 10 is 10x + C. The particular number €

depends on your choice of s, the point where you start sweeping out area,

For this functjon, if you start sweeping out area at, say, s=0,then C =10, and
s0, Ar(x) = _}‘ 10dt = 10x. (Note that C does not necessarily equal s, In fact, it

usually does8n’t. The relationship between € and s is explained in the sidebar

“Zero isn't always zero” at the end of this section.)

Figure 14-5 shows why A, (x) = 10x is the correct area function if you start
sweeping out area at zero, In the top graph in the figure, the area under
the curve from 0 to 3 is 30, and that’s given by A,(3)=10-3 = 30. And you
can see that the area from 0 to 5 is 50, which agrees with the fact that

Ar(5)=10-5= 50,

Headline: Antiderivatives excluded from family
will because they lacked an x-intercept!

Look back to Figure 14-1. All families of anti-
derivatives look like a stack of parallel curves
going up and down forever. But only a subset
of each such family can be used as area func-
tions — namely, the antiderivatives that have at
least one x-intercept (sometimes, as with Figure
14-1, that subsetis the whole family). Here's why:
It an area function starts sweeping out area at,

say, x=5,A; (5) must equal zero because at5no
area has been swept out yet. So the antideriva-
tive for the area function starting at 5 must have
an x-intercept, a zero, at x = 5, If the sweeping
starts at x = —10, then you'd use the antideriva-
tive with an x-intercept of 10 and so an. An anti-
derivative with no x-intercepts can't be used as
an area function. The shame, the disgrace!
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Figure 14-5:
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functions for
f(t)=10.
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If instead you start sweeping out area at s = —2 and define a new area function,
Br(x)= flt!dr, then C equals 20 and B, {x) is thus 10x + 20. This area function
is 20 more than A, (x), which starts at s = 0, because if you start at s = -2,
you've already swepl out an area of 20 by the time you get to zero. Figure 14-5
shows why B, (3)is 20 more than A, (3).
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And if you start sweeping out area at s = 3, the area function is C;(x) =
fl(}d!: 10x — 30. This function is 30 less than on A, (x) because with C, (x),
you lose the 3-by-10 rectangle between 0 and 3 that A, (x) has (see the
bottom graph in Figure 14-5).

The area swept out under the horizontal line f (¢) = 10, from some number

s to x;, is given by an antiderivative of 10, namely 10x + C, where the value of
C depends on where you start sweeping out area,

For the next example, look again at the parabola x*+ 1, our friend from
Chapter 13 and the discussion of Riemann sums. Flip back to Figure 13-6,
Now you can finally compute the exact area in that graph the easy way.

g

The area function for sweeping out area under x*+ 1is A, (x) = j (¢7+ 1)dt.
By the Fundamental Theorem, 4 4, (x)=x"+1,and so A, is an‘antiderivative
of x*+ 1. Any function of the form %x“+ x+ C has a derivative of x*+ 1 (try it),
so that’s the antiderivative. For this area function, as with the previous exam-
ple, when s =0, C = 0, and thus

Ar(x)= f(.rz-F‘ 1)th= %—x“-{—x

0

The area swept out from 0 to 3 — which we did the hard way in Chapter 13 by
computing the limit of a Riemann sum — is simply A, (3):

Ar(x) =% x4 x
L _l_ 3
A(3)=%3%+3

=0+3
=12

Piece o’ cake. That was much, much less work than doing it the hard way.

And after you know the area function that starts at zero, f:{rz + 1) di= %’-x“ + X,
it's a snap to figure the area of other sections under the harabola that don’t
start at zero. Say, for example, you want the area under the parabola between
2 and 3. You can compute that area by subtracting the area between 0 and 2

[rom the area between 0 and 3. You just figured the area between () and 3 —
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In the two examples f(t)=10 and f (t)=
t*+ 1, the area functions that start at s = 0 have
a value of 0 for € in the antiderivative. This is
true for many functions — including all polyno-
mial functions — but by no means for all

Zero isn't always zero

functions. For those who are curious, you can
figure out the particular value of C given your
choice of s by setting the antiderivative equal
to zero, plugging the value of sinto x; and solv-
ing for C.

that's 12. And the area between (0 and 2 is A/ (2) = 21+ 2=4 / So the area
between 2 and 3 is 12 —4 A, or7 ﬁ This hllhll’d(.lli)ll melhod brings us to the

next topic — the second version of the Fundamental Theorem,

The Fundamental Theorem
of Calculus: Take Two

Now we finally arrive at the super-duper shortcut integration theorem that
you'll use for the rest of your natural born days — or at least till the end of
your stint with calculus. This shortcut method is all you need for the integra-
tion word problems in Chapter 16. But first a warning to keep in mind when

doing integration.

jf

When using an area function, the first version of the Fundamental Theorem
of Calculus, or its second version, areas below the x-axis count as negafive
areas, See Chapter 13 for more on negative areas.

The Fundamental Theorem of Calculus (shortcut version): Let ' be any anti-
derivative of the [unction £ then

X)dx=F(b)-Fl(a)

This I;lw.nrem gives you the super shortcut for computing a definite integral

like ,r(.x"-&- l}a‘x, the area under the parabola x*+ 1 between 2 and 3. As |

show in the previous section, you can get this area by subtracting the area

between 0 and 2 from the area between () and 3, but Lo do that you need to
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know that the particular area function sweeping out area beginning at zero,

f(t2+ 1] dr, is % x*+ x (with a € value of zero).

0
The beauty of the shortcut theorem is that you don’t have to even use an area
function like A, (x) = f{r% l}d:. You just find any antiderivative, F (x), of your
function, and do the ?;ublraction. F (b)~-F (a). The simplest antiderivative to
use is the one where C = 0. So here’s how you use the theorem to find the
area under our parabola from 2 to 3, F'(x) = %x" +x is an antiderivative ol
x*+1 so, by the theorem,
a

f(x2+ 1)dx=F(3)=F(2)

2
1 3

—.x"+x] , and thus,

F(3)-F(2) can be written as 3
2

_f{x% l}dx:[%x3+x]

2

El

—l; 3+ 3—(%-2%2)

=12-4 %

Granted, this Is the same computation I did in the previous section using the
area function with s = 0, but that's only because for the x*+ 1 function, when s is
zero, Cls also zero. It's sort of a coincidence, and it's not true for all functions.
But regardless of the function, the shortcut works, and you don't have to worry
about area functions or s or C. All you do is F' (b) - F (a).

Here's another example: What's the area under f ( x) = e* between x = 3 and
x =57 The derivative of e is e*, s0 e* is an antiderivative of e, and thus

- X o, x ]
, e'dx= [e |J
K] _es._e:;
= 1484 - 2(.1
= 128.3
What could be simpler? And if one big shortcut wasn't enough to make your

day, Table 14-1 lists some rules about definite integrals that can make your
life much easier.
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Table 14-1 Five Easy Rules for Definite Integrals

i
1) f fixldx = 0 (Well, duh —there's no area "between” g and a)
a
a b
2) [ fxdx = —f fAxdx
b a
b c b
3) [ fixdx = [ Axjdx + [ Aodx
a i@ c

b i
1) fkﬂx}dx z ifj fixjdx  (kis a constant; you can pull a constant out of the intagral)
8 a :

b b b
8) [ [0+ gialdx = [ fixidx + [ gixiox
g ] 8

Now that I've given you the shortcut, that doesn't mean you're off the hook.
Here are three quite different ways to understand why the second version of
the Fundamental Theorem works. This is difficult stuff — brace yourself,

Alternatively, you can skip these explanations if all you want to know is how
to compute an area: forget about C and just subtract F (a) from F (b). l include
these explanations because I suspect that some of you are dying to learn
extra math just for the love of learning — right? Other books just give you the
rules; | explain why they work and the underlying principles — that’s why
they pay me the big bucks.

Actually, don't skip the third explanation, “Why the theorem works: The inte-
gration/differentiation connection.” It's the best of the three because it shows
the ying/yang relationship between integration and differentiation.

Why the theorem works: Area
functions explanation 1

One way to understand the Fundamental Theorem is by looking at area func-
tions. As you can see in Figure 14-6, the area between a and b can be figured
by starting with the area between s and b, then cutting away (subtracting) the
area between s and a. And it doesn't matter whether you use 0 as the left
edge of the areas or any other value of s,
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Take a look at 7 (1) = 10 (see Figure 14-7) 1o make this discussion less abstract.
Say you want the area between 5 and 8 under the horizontal line £ (t) = 10,
and you are forced Lo use calculus.

O ]
— b

-

| B T
Y

Look back at two of the area functions for £ (¢) = 10 in Figure 14-5: A, (x) start-
ing at 0 (in which C = 0) and B, (x) starting at -2 (C=20):

Ar(x)= fmm= 10x
L

B/ (x)= fmm: 10k + 20
-1

If you use A;(x) to compute the area between 5 and 8 in Figure 14-7, you get
the following:

fma:::m(s;—,qr(s)

: =10-8-10-5

=80-50 (80 is the area of the rectanglefrom 0 to 8;
50 is the area of the rectangle from () to 5)

=30
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If, on the other hand, you use B, (x) to compute the same area, you get the
same result:

_[1de=3,(3)—3,(5)

=10-8+20- (10-5+20)

=80+ 20— (50 + 20) (this is 100 - 70, of course;
100 is the area of the rectangle from -2 to 8;
T0 is the area of the rectangle from -2 to 5)
=80+ 20-50-20
=80-50
=30

Notice that the two 20s In the third line from the bottom cancel. Recall that
all antiderivatives of f (¢) = 10 are of the form 10x + C. Regardless of the value
of C, it cancels out as in this example. Thus, you can use any antiderivative
with any value of C. For convenience, everyone just uses the antiderivative
with C = 0, so that you don't mess with € at all. And the choice of s (the point
where the area function begins) is irrelevant.

Why the theorem works: Area
functions explanation 2

Here's another way to look at what's going on in the Fundamental Theorem
when you subtract F (a) from F (b).The opposite of ¥ (@) is actually the C value
for the area function for fthat begins at s = a. Take a look at an example:
What's the area between 2 and 3 under x*+ 10?

f(x‘*+ll]}dxﬂF{3}—F(2)

2

1
[—ix +1l1x]

2

. -3“+1n-3—(%-2'~'+10-2)

1
3
=1.30r10.3-22%

You can see that F' (2) is 22 / Il you use the opposite of that, 22%. for your
Cvalue, you get the area function for x*+ 10 that starts sweeping out area at 2.
In other words,
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Ar(x)= f{.ﬂ-.— 10) dt=

b

L x*+10x-22 %, and thus

Ar(3)=%-3'+10-3-22 %

This is identical to the last line of the previous computation. Thus, finding the
area between 2 and 3 by subtracting F (2) from F (3)is mathematically equiva-
lent to computing A, (3) for the area function that starts at s = 2

Why the theorem works: The
integration/differentiation connection

[ know, 1 know. You're asking, “A third explanation?” Okay, maybe I've gone a
bit overboard with all these explanations, but don't skip this one — it's the
best way to understand the second version of the Fundamental Theorem and
why integration is the reverse of differentiation. Take my word for it — it's
worth the effort. Consider Figure 14-8.

flah= o2 +x
3

» (4, 20) f'ix)=2x+1

18 ¥

16 2 1

Between x=1and x=2

14 L) ave, height is 4
12 13,12 — 12 and area is 4

0 . {1

] g L

6 (2, 6] 6

[ Batwaen x=1 and x=2
LE A =——  ayve. slopeisd 4 o ]
.4 1.2 =" and rise s 4 2 i
> : ?4 i L
=1 e 1 . k] 4 i

Figure 14-8 shows a function, x* + x, and its derivative, 2x + 1. Look carefully at
the numbers 4. 6, and 8 on both graphs. The connection between 4, 6, and 8
on the graph of f— which are the amounts of rise between subsequent points
on the curve — and 4, 6, and 8 on the graph of /' — which are the areas of the
trapezoids under f'— shows the intimate relationship between integration
and differentiation. Figure 14-8 Is probably the single most important figure in
this book. It's a picture worth a thousand symbols and equations, encapsulat-
ing the essence of integration in a single snapshot. It shows how the second

249
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version of the Fundamental Theorem works because it shows that the area
under 2x + 1 between 1 and 4 equals the total rise on fbetween (1, 2) and
(4, 20), in other words that

[r(x)de=f(4)-£(1)

Note that I've called the two [unctions in Figure 14-8 and in the above equa-
tion fand f’ to emphasize that 2x + 1is the derivative of x* + x. [ could have
instead called x*+ x Fand called 2x + 1 f, which would emphasize that x*+ x
is an antiderivative of 2x -+ 1. In that case you would write the previous area
equation in the standard way,

ff{x)derH)—F(]}

Either way, the meaning’s the same. | use the derivative version to point

out how finding area is differentiation in reverse. Going from left to right in
Figure 14-8 is differentiation: The heights on £’ give you the slopes of f. Going
from right to left is integration: The change between two heights on f gives
you an area under .

Okay, here's how it works. Imagine you're going up along ffrom (1, 2) to

(2, 6). Every point along the way has a certain steepness, a slope. This slope
is plotted as the y-coordinate, or height, on the graph of . The fact that /*
goes up from (1, 3) to (2, 5) tells you that the slope of fgoes up from 3 to 5 as
you travel between (1, 2) and (2, 6). This all follows from basic differentiation.

Now, as you go along ffrom (1, 2) to (2, 6), the slope is constantly changing.
But it turns out that because you go up a total rise of 4 as you run across 1,
the average of all the slopes on fbetween (1, 2) and (2, 6) is 4 or 4. Because
each of these slopes is plotted as a y-coordinate or height on f', it follows that
the average height of ' between (1, 3) and (2, 5) is also 4. Thus, between two
given points, average slope on f equals average height on £'.

Hold on, you're almost there. Slope equals % s0 when the run Is 1, the slope
equals the rise. For example, from (1, 2) to (2, 6) on £, the curve rises up 4 and
the average slope between those points is also 4. Thus, between two given
points on {, the average slope s the rise.

The area of a trapezoid like the ones on the right in Figure 14-8 equals its
width times its average height. (This is true of any other similar shape that
has a bottom like a rectangle; the top can be any crooked line or funky curve
you like.) So, because the width of each trapezoid is 1, and because anything
times 1 is Itself, the average height of each trapezoid under f' is its area; for
instance, the area of that [irst trapezoid is 4 and its average height is also 4.
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Are you ready for the grand finale? Here's the whole argument in a nutshell.
On f, rise = average slope; going from fto £, average slope = average height,
on [, average height = area. So that gives you rise = slope = height = area, and
thus, finally, rise = grea. And that's what the second version of the
Fundamental Theorem says:

[F(x)dx=f(b)~f(a)
ﬁ area= rise

Piece o' cake, right? (This is just a guess, but in the event that you find this
less than crystal clear, I suspect that it's not going to make much difference
to you that I'm quite pleased with what I've just written.) All kidding aside,
this is unavoidably difficult. You may have to read it two or three times for it
to really sink in,

Notice that it makes no difference to the relationship between slope and area if
you use any other function of the form x*+ x + € instead of x*+ x. Any parabola
like x*+x+ 10 or x*+ x - 5 is exactly the same shape as x*+x — it's just been
slid up or down vertically. Any such parabola rises up betweenx =1 and x = 4
in precisely the same way as the parabola in Figure 14-8. From 1 to 2 these
parabolas go over 1, up 4, From 2 to 3 they go over 1, up 6, and so on. This is
why any antiderivative can be used to find area. The total area under f’ between
1 to 4, namely 18, corresponds to the total rise on any of these parabolas from
1to 4, namely 4 + 6 + 8, or 18,

Well, there you have it — actual explanations of why the shortcut version of
the Fundamental Theorem works and why finding area is differentiation in
reverse, If you understand only half of what I've just written, you're way
ahead of most students of calculus. The good news is that you probably
won't be tested on this theoretical stuff.

Now let's come back down to earth.

Finding Antiderivatives:
Three Basic Techniques

I've been doing a lot of talking about antiderivatives, but just how do you find
them? In this section, | give you three easy techniques. Then in Chapter 15, 1
give you four advanced techniques. In case you're curious, you will be tested
on this stuff.



2 5 2 Part V: Integration and Infinite Series

Reverse rules for antiderivatives

The easiest antiderivative rules are the ones that are the reverse of derivative
rules you already know. (You can brush up on derivative rules in Chapter 10 if
you need to,) These are automatic, one-step antiderivatives with the excep-
tion of the reverse power rule, which is only slightly harder.

No-brainer reverse rules
You know that the derivative of sinx is cosx, so reversing that tells you that
an antlderivative of cosx is sinx. What could be simpler? But don’t forget that

all functions of the form sinx + C are antiderivatives of cosx. In symbols, you
write

T Vo ;
Jly SINX = COsX, and therefore

fcnsxdx =sinx+C

Table 14-2 lists the reverse rules for antiderivatives.

Table 14-2 Basic Antiderivative Formulas
1 [ ax=xsC 2) fx“dx:-f‘%+ﬁ
3) [ etdx=e*sC 8 [ _a;_x. =In|x|+ €

Hfy = ] px
5 [a dy=qa*+C

6) [ sinxdx=-cosx+C 7 [ cosxdx=sinxsC

8) _f seciy de=tanx+ C 9) _f csclx dx=-cotx+ C

10) J- secxtany dx = secx+ £ 11} _r cscxcotx de=-cscx+ €
12) [ \;a—f_'ig‘zarcsin%+ﬂ' 13) J Hﬂtﬂ =Larctan £+ ¢

ax

" i X
14) J T =-:i-an:xe:: I.‘-]l-r-f.'




Chapter 14: Integration; It's Backwards Differentiation

e\

The slightly more difficult reverse power rule
By the power rule, you know that

L e 3x* and therefore
dx

j'3xfdx=x3 +C

Here’s the simple method for reversing the power rule. Use 5x* for your
function. Recall that the power rule says to

1. Bring the power in front where it will multiply the rest of the derivative.
5x*— 4 5x*

2. Reduce the power by one and simplify.
4-5x' 4 5x%= 20x°

To reverse this process, you reverse the order of the two steps and reverse
the math within each step. Here's how that works for the previous problem:

1. Increase the power by one.
The 3 becomes a 4.
20x* - 20x*
2. Divide by the new power and simplify.

20¢* - 2 4= 5y
And thus you write fZ{]x“ de=5x"+C.

Especially when you're new to antidifferentiation, it’s a good idea to test your
antiderivatives by differentiating them — you can ignore the C. If you get
back Lo your original function, you know your antiderivative is correct,

With the antiderivative you just found and the second version of the
Fundamental Theorem, you can determine the area under 20x* between,

say, 1 and 2;

,{-Eﬂfdx: S5x'+C, thus

.j?zm“dx:[ix*lf
1

=5.2'-5.1"

253
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Guessing and checking

The guess-and-check method works when the integrand — that’s the thing
you want to antidifferentiate (the expression after the integral symbol not
counting the dx) — is close to a function that you know the reverse rule for.
Ior example, say you want the antiderivative of cos(2x). Well, vou know that
the derivative of sine is cosine. Reversing thal tells you that the antideriva-
tive of cosine is sine. So you might think that the antiderivative of cos(2x)is
sin(Zx). That's your guess. Now check it by differentiating it to see if you get
the original function, cos(2x )

Edf sin(2x)
=cusf?.r) 2 (sine rule and chain rule)

=2cos(2x)

This result is very close to the original function, except for that extra coeffi-
cient of 2. In other words, the answer is 2 times as much as what you want.
Because you wanlt a result that's half of this, just try an antiderivative that's
half of your first guess: %-sin(Zx}. Check this second guess by differentiating
it, and you get the desired resull.

Here's another example. What's the antiderivative of (3x - 2)'?

1. Guess the antiderivative.

This looks sort of like a power rule problem, so try the reverse power rule,
Thic mmtideri}rativc of x'is % x* by the reverse power rule, so your guess
is g{:lr— 2,
2. Check your guess by differentiating it.
[bear]
=5 :,!_;{3}{‘— 2)"-3 (power rule and chain rule)
=3(3x-2)1
3. Tweak your first guess,

Your result, 3 (3x - 2)* is three times too much, so make your second
guess a third of your first guess — that's % . % (3x-2)% or 11—5 (3 —2)"
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4. Check your second guess by differentiating it.
d 1 5
E[ﬁ{ﬁx‘—- 2) l
=5 -ijs—(:ix— 2)':3 (power rule and chain rule)
=(3x-2)*
This checks. You're done. The antiderivative of (3x - 2) is 1k (3~ 2)*+ C.

The two previous examples show that guess and check works well when

the function you want to antidifferentiate has an argument like 3x or 3x + 2
(where x is raised to the first power) instead of a plain old x. (Recall that in a
function like /5x, the 5x is called the argument.) In this case, all you have to do
Is tweak your guess by the reciprocal of the coefficient of x — the 3 in 3x + 2,
for example (the 2 in 3x + 2 has no effect on your answer). In fact, for these
easy problems, you don't really have to do any guessing and checking. You
can immediately see how to tweak your guess. It becomes sort of a one-step
process. If the function’s argument is more complicated than 3x + 2 — like the
x*in t:.os{x‘)—- you have to try the next method, substitution.

The substitution method

If you look back at the examples of the guess and check method in the previ-
ous section, you can see why the first guess in each case didn’t work. When
you differentiate the first guess, the chain rule produces an extra constant:

2 in the first example, 3 in the second. You then tweak the guesses with %
and } to compensate for the extra constant.

Now say you wanlt the antiderivative of cos{xz) and you guess that it is
sin (x*}. Watch what happens when you differentiate sinﬁ xz} to check it.

{f; Siu(.rz}
- t_:us{x’] +2x (sine rule and chain rule)

= Zxc:us{xz)

Here the chain rule produces an extra 2x — because the derivative of x*is 2x —
but if you try to compensate for this by attaching a e to your guess, it won't
work. Try it.

So, guessing and checking doesn't work for antidifferentiating cos gx"‘) —
actually no method works for this simple-looking integrand (not all functions
have antiderivatives) — but your admirable attempt at differentiation here
reveals a new class of functions that you can antidifferentiate. Because the
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derivative of sin(.rzj is E'.xcusl:xl‘ , the antiderivative of 2x cos( x* ) must be
sln{.r‘). This function, Zxcus( x"), is the type of function you can antidifferen-
tiate with the substitution method.

The substitution method works when the integrand contains a function and
the derivative of the function’s argument — in other words, when it contains
that extra thing produced by the chain rule — or something just like it except
for a constant. And the integrand must not contain anything else.

The derivative tl)fe", ise’ " 3x* by the e rule and the chain rule. So, the anti-
denvatlve of e 3x*is e*, And if you were asked to find the antiderivative
of e* + 3x*, you would know that the substitution method would work because
this E'xpreulnn contains 3x°, which is the derivative of the argument of ¢ =
namely x*,

By now, you're probably wondering why this is called the substitution method.
1 show you why in the step-by-step method below. But first, [ want to point
out that you don’t always have to use the step-by-step method. Assuming you
understand why the antiderivative of e* - 3x” is ", you may encounter prob-
lems where you can just see the antiderivative without doing any work. But
whether or not you can just see the answers to problems like the previous
one, the substitution method is a good technique to learn because, for one
thing, it has many uses in calculus and other areas of mathematics, and for
another, your teacher may require that you know it and use it. Okay, so here's
how to find the antiderivative ij Ertos(x”}dx with substitution.

1. Set u equal to the argument of the main function,

The argument of cos{xzj is x%, 50 you set u equal to x”.

2. Take the derivative of u with respect to x.

U=x- sod =2x

3. Solve for dx.

dx 1
du = 2xdx (cross multiplication)

% = dx (divide both sides by 2x)
4. Make the substitutions.

In f 2xcc:-s ) dx, u takes the place of x* and -2? takes the place of dx.

S0 now you've got [ 2xcosu gﬁ The two 2xs cancel, giving you

f cos Ui,
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5. Antidifferentiate using the simple reverse rule,

j cosudu=sinu+ C

6. Substitute x* back in for u — coming full circle.

u equals x*, so x" goes in for the u:
j cosudu= sin{x!:] +C

That’s it. So fzxc:ns{x?]dxr sin[:xz] +C.

If the original problem had been fﬁ.rc:-us( x”) dx instead of f 2xcos (x* ) dx,
you follow the same ~;tep~i except that in Step 4, alter making the substitution,
you arrive at f'ixc Osu -2? The xs still cancel — that’s the :mpﬂrtanl thing —
but after canceling you get f 5 cosudu, which Ins that extra 2 9 in it. No worries.
Just pull the g through the f symbol, giving you 5 2 j cosudu Now you finish
this problem just as you did above in Steps 5 and 6, except for the extra g

:i cosudu= 5 (sinu-C})
2 2

=%.~;inu+%€
'—%sin{x”)+ %C

Becausc C Is any old constant, 5 D ¢ is still any old constant, so you can get rid
of the 2 5 in front of the C. That may seem somewhat (grossly?) unmathematical,
but it's right. Thus, your final answcrls-i sin(x*) + €. You should check this
by differentiating it,

Here are a few examples of antiderivatives you can do with the substitution
method so you can learn how to spot them.

w

5 wfdx*cos{x“)dx

| The derivative of x* is 3x", but you don't have to pay any attention to
.« the 3in3x’or the 4 in the integrand. Because the integrand contains x?,
i and because it doesn't contain any other extra stuff, substitution works.
0 Tryit.

| 'l'.l(]sec’x--:’.'“'“ dx

The integrand contains a function, e™*, and the derivative of its argu-
. ment, tanx — which is sec” x. Because the integrand doesn’t contain any
{|  other extra stuff (except for the 10, which doesn’t matter), substitution
i works. Do it.
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| }‘.%-cnsx,fsim: dx

j_; Because the integrand contains the derivative of sinx, namely cosx, and
no other stuff except for the %, substitution works. Go for it.

Hey, I just had a great idea. (That's right. I'm still learning.) You can do the
three problems just listed with a method that combines substitution and
guess-and-check (as long as your teacher doesn't insist that you show the six-
step substitution solution). Try using this combo method to antidifferentiate
the first example, f 4x* cos(x*) dx. First, you confirm that the integral fits the
pattern for substitution — it does, as pointed out in the first item on the
checklist. This confirmation is the only part substitution plays in the combo
method. Now you finish the problem with the guess-and-check method.

1. Make your guess.

The antiderivative of cosine is sine, so a good guess for the antiderivative
of -'-I.rlms{x:’) is sin(x").

2. Check your guess by differentiating it.
é—i,sin(x’} = (‘.U.‘i(l‘:t} *3x* (sine rule and chain rule)
= 3x"(:-:m{x"')
3. Tweak your guess.
Your result from Step 2, 3x” cos(x*), is % of what you want, 4x" cos(x*), so
make your guess % bigger (note that % is the reciprocal of %). Your second
guess is thus 3 sin (x" }
4. Check this second guess by differentlating it.
Oh, heck, skip this — your answer's got to work.

Finding Area with Substitution Problems

You can use the Fundamental Theorem to calculate the area under a function
that you integrate with the substitution method. You can do this in two ways.
In the previous section, I use substitution, setting u equal to x?, to find the
antiderivative of Ercns(xz}:

{Mcus(x“}dx: sin{xz) +C
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If you want the area under this curve from, say, % to 1, the Fundamental
Theorem does the trick:

f?xcos(xz}dx%sin(x”)]

12

= sin(1?) - sln({%)z)
=sinl - slll(%)

= 0.841 - 0.247

= 0.594
Another method, which amounts to the same thing, is to change the limits of
integration and do the whole problem in terms of u, Refer back to the six-step
solution in the section “The substitution method.” What follows is very simi-
lar, except that this time you're doing definite integration rather than indefi-

nite integration. Again, you want the area given by f Qx(*.ns{xz)dx.

I
1. Set u equal to x*.

[ -]

. Take the derivative of & with respect to x.

di .

3. Solve for dx.

_ du
dx= Ty
4. Determine the new limits of integration.

L) 2l by
u=x" s0 when X=g,u=g

and when x=1, u=1

5. Make the substitutions, including the new limits of integration, and
cancel the two 2Zxs,

In this problem, only one of the limits is new because when x =1, u = 1,

fzrcos(x"‘}d.x

12

1
= (T du
= COSl 5=
J‘ 2x
1M
1
= J‘cusur.-'u

L
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6. Use the antiderivative and the Fundamental Theorem to get the

desired area without making the switch back to x’.
1

fcosud:u [sinu]: :
i -
=sinl —sin%
= (.594

It's a case of six of one, half a dozen of another with the two methods. Both
require the same amount of work. Take your pick.
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In This Chapter

- Breaking down integrals into parts

p- Finding trigonometric integrals

i Returning to your roots with SohCafiToa

i Understanding the As, Bs, and Cxs of partial fractions
= LIATE: Lilliputians In Africa Tackle Elephants
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figure it wouldn’t hurt to give you a break from the kind of theoretical

groundwork stuff that [ lay on pretty thick in Chapter 14, so this chapter
cuts to the chase and shows you just the nuts and bolts of several integration
techniques. You see three basic integration methods in Chapter 14: the reverse
rules, the guess-and-check method, and substitution. Now you graduate to four
advanced techniques: integration by parts, trigonometric integrals, trigonomet-
ric substitution, and partial fractions. Ready?

Integration by Parts: Divide and Conquer

Integrating by parts is the integration version of the product rule for differen-
tiation. Just take my word [or it. The basic idea of integration by parts is to
transform an integral you can't do into a simple product minus an integral
you can do. Here’s the formula:

Integration by Parts: ’{ “udv=up - f vdu

Don’t try to understand this yet. Wait for the examples that follow.

Note that v and v are in alphabetical order in | udv and uv. If you remember
that, you can easily remember that the integral on the right is just like the
one on the left, except with the u and v reversed.
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Figure 15-1:
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integration
by parts

box.
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Figure 15-2:
Filling in
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Here's the method in a nutshell. What's [ /x In (x) dx? First, you've got to
split up the integrand into a u and a dv %0 that it fits the formula. For this
problem, choose In(x) to be your u, Then everything else is the du, namely

v x dx. (I show you how to choose 1 in the next section —it's a piece o’ cake.)
Next, you dilferentiate u to get your du, and you integrate dv to get your v.
Finally, you plug everything into the formula and you're home f[ree.

To help keep everything straight, organize integration-by-parts problems with
a box like the one in Figure 15-1. Draw an empty 2-by-2 box, then put your u,
In(x), in the upper-left corner and your dv, ,/E dx, in the lower-right corner,
See Figure 15-2.

i v
du av
In(x)
diff.| |— —! |int.
x dx

The arrows in Figure 15-2 remind you to differentiate on the left and to inte-
grate on the right. Think of differentiation — the easier thing—as going down
(like going downhill), and integration — the harder thing —as going up (like
going uphill).

Now complete the box:

u=In(x) dv=/x dx
%:31‘-" J‘_du=./.ﬁr.{r
du= 3%- dx U= % x7: (reverse power rule)

Figure 15-3 shows the completed box.

A good way to remember the integration-by-parts formula is to start at the
upper-left square and draw an imaginary number 7 —across, then down to
the left. See Figure 15-4,
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L e T
Figure 15-3:
The
completad
hox for

[ /xIn(x) dx

Figure 15-4;
A box with
atinit
Who says
calculus is
rocket
science?
i ar = e |

In(x) | §x¥
diff.| |- int.
lxdx X dx
—_—

Remembering how you draw the 7, look back to Figure 15-3. The integration-
by-parts formula tells you to do the top part of the 7, namely In{x) - %x.’/r
minus the integral of the diagonal part of the 7, j g x7. %c{x By the way,
this is much easier to do than to explain. Try it. You'll see how this scheme
helps you learn the formula and organize these problems.

Ready to finish? Plug everything into the formula;
fudu= Uy - fudu
[/xin(x)de=in(x)- &7~ [£x7 Lax
=%x5’: In{x)- é fx/"Q dx
=% x7:In(x) - %(% X/ + C) (reverse power rule)
:%x%]n(x}— g-xf/* = %C

=2 xXIn(x)- g 2% +C

In the last step, you replace the —% C with C because —% times any number is
still just any number,
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Picking your u

Here's a greal mnemonic device for how to choose the u (again, once you've
selected your u, everything else is automatically the dv). .

Herbert E. Kasube came up with the acronym LIATE to help you choose your
u (calculus nerds can check out Herb’s article in the American Mathematical
Monthly 90, 1983 issue):

L Logarithmic (like log(x))

I Inverse trigonometric  (like arctan(x))
A Algebraic (like 5x*+ 3)

T Trigonometrj;:: (like cos(x))

E Exponential (like 107}

To pick your u, go down this list in order; the first type of function on this list
that appears in the integrand is the u.

Here are some helpful hints on how to remember the acronym LIATE. How
about Let’s Integrate Another Tantalizing Example. Or maybe you prefer
Lilliputians [n Africa Tackle Elephants, or Lulu'’s Indigo And Turquoise Earrings.
The last one's not so good because it could also be Lulu’s Turguoise And
Indigo Earrings — Egad! What have | done? Now you'll never remember it!

Well, how about you try an example. Integrate | arctan(x)dx. Note that inte-
gration by parts sometimes works for integrands like this one that contain
only a single function,

1. Go down the LIATE list and pick the u.

You see that there are no logarithmic functions in arctan(x)dx, but there
is an inverse trigonometric function, arctan(x). So that’s your u.
Everything else is your dv, namely, plain old dx.

2. Do the box thing.

See Figure 15-5.

arctan(x) arctan(x X
diff. — |int,
1
dx 1442 dx ox
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Figure 15-6:
Yet more
boxes.
T Py

3. Plug everything into the integration-by-parts formula or just draw the
imaginary 7 in the box on the right in Figure 15-5.

fﬂdu =y - .’{.Ddu

farcl.an(x}::Lx-=xarctan{x)—fx 1+x ——dx

1 - dx with the

Now you can finish this problem by 1ntegrat1ng / X
substitution method, setting u=1-+x". Try it (see Llld])t(‘l' 14 for more
on the substitution method). Note that the u in u =1 + x* has nothing
to do with integration-by-parts v. Your final answer should be
farctan(x} dx=xarctan(x) — %]n (] G

Here's another one. Integrate j .xsln{?..r) dx.

1. Go down the LIATE list and pick the u.

Going down the LIATE list, the first type of function you find in
xsin(3x)dx is a very simple algebraic one, namely x, so that's your w.

2. Do the box thing.
See Figure 15-6.

X X |-Scosax
diff. int.

sin(3xdx ix sinf3x)elx

3. Plug everything into the integration-by-parts formula or draw an
imaginary 7 over the box on the right in Figure 15-6.

f udo = uv - [ vdu

fxt.m{.ir)dx— L xcos (3x) - J{—.lcns(llx')dx'
=~ xcos(3x) + & 3 [ cos(3x)dx
You can easily integrate j cos( 3x) dx with substitution or the

gucss-ancl-check method. Go for it. Your final answer should be
—ixcos(3xj qsm (3x)+C.
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Integration by parts: Second
time, same as the first

Sometimes you have Lo use the integration-by-parts method more than once
because the first run through the method takes you only part way to the
answer. Here's an example. Find ,rx’ e’ dx.

1. Go down the LIATE list and pick the u.

x'e"dx contains an algebraic function, x*, and an exponential function,
e* (IU's an exponential fUllLtl[lIl because there's an x in the exponent).
The first on the LIATE list is x*, so that's your u,

2. Do the box thing.
See Figure 15-7,

i s g
Figure 15-7; Xt Xk [
The boxes diff.

: for
j x e dx. e¥dx 2xdx %ty

int.

3. Use the integration-by-parts formula — or the “7” mnemonic.
j-x"e" dx=x'e" - f‘(!'- 2xdx
=xle* - Zj_xee"dx

You end up with another integral, f xe" dx, that can't be done by any of
the simple methods —reverse rulés, guess and check, and substitution.
But note that the power of x has been reduced by one, so you've made
some progress, Il you use Lntegrauon by parts again [or ,‘ xe” dx, the x
disappears entirely and you're done,

4. Integrate by parts again,
I'll et you do this one on your own.
fxe’dx:xe" ’{ et dx
=ei=lar =)

5. Take the result from Step 4 and substitute it for the f xe”* dx in the
answer from Step 3 to produce the whole enchilada;

{x*rf‘ dy=x"e’- E[xe" — g+ C}

=x'e* - 2xe* + 2e* - 20
=x'e"— 2xe* + 2e* 4 (
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Going around in circles

Sometimes if you use integration by parts twice, you get back to where you
started from — which, unlike getting lost, is not a waste of time, Integrate
e*cos(x)dx and be enlightened.

Your u is cos(x) (it's Tin LIATE), and e* dx is your dv. Now fast forward to the
formula step:

/.e’cos(x)dxfe"cns{x}—fe‘(—sin[x}}a‘x
=e“cos(x) + J{.e‘sin(x)dx
Integrating by parts again for ,l"e'sin(xja{xgives you
fe*sin(x}dx=e‘5in{x}— fe'cns(x)dx

And you're back to where you started from: ‘e"'coai{x) dx. No worries, First,
substitute the right side of the above equation for thefe" sin{x) dx from the
original solution;

,"e'cos{x)dx—'e"costx}+fe"sln(x}dx
)"e’*ms(x)dx-.-.e"-:‘.ns(x}+e"s£n(.r)— fe*cus{x}dx

You can now solve this equation for the integral ,re‘ cos(x)dx. Use [in place
of that integral to make this messy equation easier on the eyes:

f=e"cos(x)+e"sin(x)~1
Add Ito both sides:
2l=e"cos(x)+e"sin(x)
Multiply both sides by }:
I= %(e'tos{x} + re"sin(x}]
= % ecos(x)+ % e"sin(x)

Finally, put the fe‘c-::-s(x)dx back in for the /, and don’t forget the C:

fe’cos{x}a‘x— %e"coa{x} + %e"' sin{x)+C
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Tricky Trig Integrals

<P

In this section, you integrate powers of the six trigonometric functions, like

l sin® (x) dx and fscc (x)dx, and products ar quotients of different trig
functions, Iikefsm {x)cos' (x)dx dndjL(x))dx This is pretty tedious —

time to order up a double espresso.

To use the following techniques, you must have an integrand that contains
just one of the six trig functions ]iker[(:sc“(x)dx or a certain pairing of trig
functions, like j sin’ (x) cos(x) dx. If the integrand has two trig functions, the
two must be one of these three pairs: sine with cosine, secant with tangent,
or cosecant with cotangent. If you have an integrand containing something
other than one of these three pairs, you can easily convert the problem into
one ol these pairs by using trig identities like sin(x) = 1/esc (x) and tan(x) =
sin(x)/cos(x). (See the Cheat Sheet for more handy trig identities.) For
instance,

[51[1 )sec I)td"(x ) dx
: sin(x)
= [ sin (“'}cm(x) cos(x) ¢

‘f :~iin“(x}dx

cos’ (x)
Alter doing any needed conversions, you get one of the following three cases:
fsin”‘(x}t:us”(x}dx
fsec'" {x)tan"(x)dx
ftsc"’{x)cot”(x}c[r

where either m or n is a positive integer.

Positive powers of trig functions are generally preferable to negative
powers, so, for example, you want to convert J sin™*{x)tan *{x) dx into
[csc“{x}cm:(x)dx.

The basic idea with most of the [ollowing trig integrals is to organize the
integrand so that you can make a handy u-substitution and then integrate
with the reverse power rule. You'll see what | mean in a minute.
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By the way, while the following list of cases may be exhausting, it is not
exhaustive. For me to go through all the possibilities would be both sadistic
and masochistic. If your teacher gives you integrals not covered by the fol-
lowing cases, good luck!

Integrals containing sines and cosines

This section covers integrals containing — can you guess? —sines and cosines.

Case 1: The power of sine is odd and positive
If the power of sine is odd and positive, lop off one sine factor and pul it to

the right of the rest of the expression, convert the remaining (even) sine fac-
tors to cosines with the Pythagorean identity, and then integrate with the
substitution method where u = cos(x).

\BER . :
ﬁ The Pythagorean identity tells you that, for any angle x, sin®(x) + cos*(x) = 1.
And thus sin® (x) = 1 = cos®(x) and cos®(x) =1~ sin*{x).

Now integrate fsin“(x)cos'(.r}dx,

1. Lop off one sine factor and move it to the right.
j sin*(x)cos®* (x)dx = ,‘“sin“(x]cos*(x)sin{x}dx

2. Convert the remaining (eve?n) sines to cosines using the Pythagorean
identity and simplify.

fsin"’{x}c.ns"(x}sin{x}dx
:f{l --c-.ns?(x}}cos"(x)sin(x)dx
;f{cos‘{x)—cos“(x)}sin(x}dx

3. Integrate with substitution, where u = cos(x).
u =cos(x)
du _
dx
du=—sin(x)dx
P You can save a little time in all substitution problems by just solving
for du—as | did immediately above — and not bothering to solve for dx.
You then tweak the integral so that it contains the thing du equals
(=sin(x ) dx) in this problem. The integral contains a sin(x) dx, so you
multiply it by —1 to turn it into —sin(x) dx and then compensate for that
—1 by multiplying the whole integral by —1. This is a wash because —1

=sin(x)
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times —1 equals 1. This may not sound like much of a shortcut, but it's a
good time saver once you get used to it.

So tweak your integral:
f{cos‘{x} - cas“(x))(sin(x}dx]
= - f(cos*(r) - cos“(x)}{—sin(xjdx)

Now substitute and solve by the reverse power rule:

—f(u'—u“)du

= —%u"+%u7+c

= —%,-(!os"(x}—%{:o:;ﬁ{x) +C

Case 2: The power of cosine is odd and positive

This problem works exactly like Case 1, except Lhat the roles of sine and

os”
cosine are reversed. Find f—ﬁ
J/sin(x)
1. Lop off one cosine factor and move it to the right,

f '-’”_E‘{_'ﬂ dx = f('.t.ls"(x)(sj"_:/’ (x)) dx

= ft:(:rsz (x)(sin s (x))cos(x)dx

2. Convert the remaining (even) cosines to sines with the Pythagorean
identity and simplify.

fms“{x){sin 7 (x})c:us{x)dr
=f(l —sin“{x}}(sh] 0 (x}}cc‘:s{x]dx
:f[sln /i (x) = sin”t (xjjcns(xjdx

3. Integrate with substitution, where u = sin x).
u=sin{x)
% =cos(x)
dir= cos(x)dx
Now substitute:

:f(u S—us ) du

And finish integrating as in Case 1.
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Case 3: The powers of both sine and cosine are even and nonnegative

Here you convert the integrand into odd powers of cosines by using the fol-
lowing trig identities:

sin’(x) = I—#S{Zx} and cos*(x)= Hu’zi"{")‘x}
Then you finish the problem as in Case 2. Here's an example:
[sin"(x)cos“(x)dx

=f(zsin”(inf)]|E l;tus?(x}dx

_'!1?]1_/ - c08({2x) - cos®(2x) + cos (.!x)]r.-'x (It's just algebral)
-5 /1

= bc——J‘ mq(.&r}dx——j cos’(2x)dx+ g j cos’(2x) dx

The first in this string of integrals is a no-brainer; the second is a simple
reverse rule with a little tweak for the 2; you do the third integral by using the
cos’ (x)identity a second time; and the fourth integral is handled by follow-
ing the steps in Case 2. Do it. Your final answer should be

=
-
|
2~
T
=
2
|
&~
o
g
<
+
!

A veritable cake walk.

Integrals containing secants and tangents

Ready for a shock? This section is about integrals containing secants and
tangents.

Case 1: The power of tangent is odd and positive

Integrate f Jsec(x)tan® (x)dx
1. Lop off a secanttangent factor and move it to the right.

First, rewrite the problem: fJ'ie('(x tazl"'(x)tf.r:fsec?i (x)tan’ (x)dx.

Now, taking a secant-tangent factor out of sec”: ( x) tan (x) may seem
like trying to squeeze blood from a turnip because sec”: (x) has a power
less than sec'(x), but it works:

J"secys (x) lan“{x}u‘x:f(se-:: /i (x}tanﬂ(x})ﬂec(x}tﬂn(x}dx

271
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W

2. Convert the remaining (even) tangents to secants with the tangent-
secant version of the Pythagorean identity.

An easy way to remember the tangent-secant version of the Pythagorean
identity is to start with the sine-cosine version, sin®(x) + cos*(x) = 1,
and divide both sides of this equation by cos®(x). This produces
tan’(x) + 1 = sec*(x). To produce the cotangent-cosecant version,
divide both sides of sin”(x) + cos®(x) = 1 by sin®(x). The result is

1+ cot*(x)=csc’(x).

The Pythagorean identity is tan® (x) + 1 = sec(x), and thus
tan®(x) = sec’ (x) - 1. Now make the switch,

,‘ (scc " (x)mn“(x)}scc(x}mn(x}dx
-——.’l(-(scc 7 (x)(sec’ (x) - 1])““-(-*}tan{x)dx
_;Jl‘[sct?; (x)—-sec'.'/: (X})SEC[x)tan{x)dx

3. Solve b}j substitution with u = sec(x) and du = sec(x)tan (x) dx.
=J‘ (113’:—&-'/"-5}:3‘:.-

=2u¥i-2u¥i+C

—% sec”s (x) - 2sec’s (x)+C
Case 2: The power of secant is even and positive

Find fsec“ {(x)tan® (x)dx,
1. Lop off a sec’ (x) factor and move it to the right.
:fsm:”(x}tan‘(x]seu”{x)dx

2. Convert the remaining secants to tangents with the Pythagorean iden-
tity, sec’ (x) = tan® (x) + 1.

= f(tanf{x) + 1) tan* (x) sec? (x) dx

:f(tan“{x}+ tan‘(x))sec’ (x) dx
3. Solve by substitution, where u = tan(x) and du = sec’(x) dx .
=J"(u“-1-u"]du

—7%- tan’ (x) + %w.n5 (x)+C

Case 3: The power of tangent is even and positive and there are no
secant factors

Integrate ftan“(x}cbc.
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1. Convert one tan®( x ) factor to secants using the Pythagorean identity,
tan® (x ) = sec® (.r}- L

j tan* (x)(sec’ (x) - 1) dx
2. Distribute and spllt up the integral.
=flan"l[x}sec?(x}dx—ftan“ {x)dx
3. Solve the first integral like in Step 3 of Case 2 for secants and tangents.

You should get J‘.tiil'll (x)sec’ (x)dx= é tan®(x) + C.
4. For the second integral from Step 2, go back to Step 1 and repeat the

process.
For this piece of the problem, you get
—ftan*{x)n‘x-— —ftan'“'(x}sccz(x}dx-l- ftan:(x}dx.
5. Repeat Step 3 for - [ tan’ (x) sec* (x) dx (using Case 2 (Step 3) for
secants and tangents again).
—f tan®(x) sec” (x)dx=— é tan’(x)+C

6. Use the Pythagorvan 1denilt:.r to convert the J‘ tan® (x) dx from Step 4
into j sec’ (x)dx-

Both of these mtcgrals can be done with simple reverse differentiation
rules. After collecting all these pieces — piece | from Step 3, piece 2
from ‘:tep 5, and pieces 3 and 4 from Step 6 — your final answer should
be ’f tan" xjdﬁ:—ltan (x)— tan® (x) +tan(x) - x+C.

Piece of cake.

Integrals containing cosecants
and cotangents

Cosecant and cotangent integrals work exactly like the three cases for

secants and tangents — you just use a different form nf the Pythagorean iden-
J
t(x)
/ese(x)
-2sin/t (x) - —-: s¢/t (x)+C, pass “Go” and collect $200.

Lity: I+-:,ut“(x] csc’ (x). Try this one —integrate ’i dx. If you get

273
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P [f you get a secant-tangent or a cosecant-cotangent problem that doesn't
fit any of the cases discussed in the previous section or if you're otherwise
stumped by a problem, try converting it to sines and cosines and

solving it with one of the sine-cosine methods or with identities like

: : , 1+ cos(2x
sin®(x) +cos’(x) =1 and cos’(x) = —P—ZL-)-
-tan*(x) = ;
For example, f ——7; ax fits none of the discussed cases, but you
Josec(x)
P |

5in (X
can convert it to ’rcos"'{(?)} dx. This doesn’t fit any of the three sine-cosine

cases, but you can use the Pythagorean identity to convert it to

f(l—cus“(x)}” 5 fl—i'cos“(x)-l- cos* (x)
J cos’(x) % cos’ (x)
fse::?{x}dx— f2{bf+ f—cosz(x}dx, and the resl is easy. Try it. And see

dx. This splits up into

whether you can differentiate your result and arrive back at the original
problem,
You can also do many ordinary secant-tangent or a cosecant-cotangent prob-

lems by converting them into sine-cosine problems — instead of doing them
the way I describe in this and the previous section.

Your Worst Nightmare: Trigonometric
Substitution

With the trigonometric substitution method, you can do integrals containing
radicals of the following forms: /u’+ a*, /a*~ «? and Ju* - a” (as well as powers
of those roots), where a is a constant and u is an expression containing x. For
instance, /3’ - x?is of the form /a’— o,

You're going to love this technique. . . about as much as sticking a hot poker
in your eye,

?
A Consider pulling the fire alarm on the day your teacher is presenting this
topic. With any luck, your teacher will decide that he can't afford to get
behind schedule and he'll just omit this topic from your final exam.
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Before | show you how Lrigonometric substitution works, I've got some silly
mnemonic tricks to help you keep the three cases of this method straight.
Remember, with mnemonic devices, silly (and vulgar) works. First, the three
cases involve three trig functions, tangent, sine, and secant. Their initial letters,
t 5, and s, are the same letters as the initial letters of the name of this tech-
nique, trigonometric substitution, Pretty nice, eh?

Table 15-1 shows how these three trig functions pair up with the radical
forms listed in the opening paragraph.

Table 15-1 A Totally Radical Table

tan(f) «— 7 + a
sin(@) «——— +fa’- it

secl@)=—— Ju' - a°

To keep these pairings straight, note that the plus sign in /u®+ a* looks like a
little ¢ for tangent, and that the other two forms, /a’— u” and /u’— a*, contain
a subtraction sign—s is for sine and secant. To memorize what sine and secant
pair up with, note that /a* - u* begins with the letter a, and it's a sin to call
someone an ass. Okay, | admit this is pretty weak. If you can come up with a
better mnemonic, use it!

Ready to do some problems? I've stalled long enough.

Case 1: Tangents

\ X r : [ dx .
Find | ——= First, note that this can be rewritten as | ———— soit
" JOx*+ 4 ’{ J (3 )t + 2

fits the form /u*+ a®, where u = 3x and a = 2.

1. Draw a right triangle — basically a SohCahToa triangle — where
tan (0) equals G , which is <.

Because you know that tan(8) = % (from SohCafiToa —see Chapter 6),
your triangle should have 3x as O, the side opposite the angle 0, and 2 as
A, the adjacent side. The length of the hypotenuse automatically equals
your radical, ,/{:ix)= +2°, or /9x* + 4, It's not a bad idea to confirm this
with the Pythagorean theorem, a” + b*= ¢”. See Figure 15-8.
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SR i |
Figure 15-8:
A
SohCahToa
triangle for
the Ju'+ a*
case. What
sinister
mind dreamt
up this
integration
technique
anyway?
IR TR

2. Solve tan(0) = % for x, differentiate, and solve for dx.

% = tan(6)

Jx=2tan(0)

3. Find which trig function is represented by the radical over the a, and
then solve for the radical.

Look at the triangle in Figure 15-8. The radical is the hypotenuse and

4
a is 2, the adjacent side, so ﬁx_ is “, which equals secant. So
; 2 A

/! i

sec(8) =5, and thus /x7+ 4 = 2sec(0),

4. Use the results from Steps 2 and 3 to make substitutions in the original
problem and then integrate.

From Steps 2 and 3 you have dx= %-sccz (6) df and JOx 4 4 = 2sec (0),
Now you can [inally do the integration.,

ﬁaec (6)do

lf\f’qxq.q a W
:-,-..;— [5&(‘.{9}{)‘9

; from the handy - dandy tabl
‘%'“Iﬁt‘-cﬂﬁ}+tan{9}‘+c ¥y~ dandy table

of integrals on the Cheat Sheet
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B\

<\

5. Substitute the x expressions from Steps 1 and 3 back in for sec(@)
and tan (0 ). You can also get the expressions from the triangle in
Figure 15-8.

J9x%+ 4 oy
2 2

=L
-Hln +

2 g

it
"3]“

=%l“‘m +3x‘— .lln2+ C by the log of a quotient rule, 1
. 3 of course, and distributing the 3

|I‘.lt':-:':ru|.~:-:-. —%!|12 } C‘

Is just a constant

=L In|/0x"+ 4 +3x|+ C

Now tell me, when was the last time you had so much fun? Before tackling
Case 2, here are a couple tips.

For all three cases in trigonometric substitution, Step 1 always involves draw-
ing a triangle in which the trig function in question equals %:

Case 11s tan(6) = 4.
Case2is 5]11{9):%.

Case 3is sec(0) = 4.

The fact that the « goes in the numerator of this %lractinn should be easy to

remember because i is an expression in x and something like Th' is somewhat

simpler and more natural to see than % S0 just remember that the x goes
on top.

For all three cases, Step 3 always involves putting the radical over the a.
The three cases are given below, but you don't need to memorize the trig
functions in this list because you'll know which one you've got by just look-
ing at the triangle —assuming you know SoliCafToa and the reciprocal trig
functions (flip back to Chapter 6 if you don’t know them). I've left out what
goes under the radicals because by the time you're doing Step 3, you've
already got the right radical expression.
/.

a:

!
Case 2is cos(0) = 5.

Case 1issec(8) =

Case 3istan(@) = ‘/T
/
In a nutshell, just remember % for Step 1 and ;- for Step 3.
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Case 2: Sines

i (L

2‘/_2—3(

Integrate f dx___ -, rewriting it first as S0 that it fits the form
x? /16 - x* g I

Ja'—u’, wherea=4and u=x
1. Draw a right triangle where sin(6) = &, which is %
Sine equals ﬂ s0 the opposite side is x and the hypotenuse is 4. The
length {:rf the adjacent side is then automatically equal to your radical,
/16 - x*. You should confirm this with the Pythagorean theorem. See
llgure 159,

Figure 15-9:
A /
SohCahToa
triangle /
: for the /
(el /ﬁ [

case. i \‘J']E 7 xz.

[
=

2. Solve sin(@) = #} for x, differentiate, and solve for dx.
3 =sin(0)
x=4sin(0)
dxpss
0 4cos(0)

dx=4cos(0)dd
3. Find which trig function equals the radical over the a, and then solve
for the radical.
Look at the triangle in Figure 159, The radical, /16 — x°, over the a, 4,
is 1y, which you know from SofiiCahToa equals cosine. So that gives you
16 = »2
cos(0)= 3‘5{1'&'4—1, and thus
J16 - x* = dcos(8)
4. Use the results from Steps 2 and 3 to make substitutions in the original
problem and then integrate.

Note that in this particular problem, you have to make three substitu-

tions, not just two like in the first example. From Steps 2 and 3 you've
L

got
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x=4sin(0), dx=4cos(8)dd, and /16 - x* =4 cos(8), so
f _;[ 4005{0)0'9
Jl& o (4sin -9} 4<.-::-'=i(3)

=flﬁ:ii|1’(ﬂ)
:%.’rcsu:(ﬂ)dﬂ

=—1gcot(6) + C
! 2
5. The triangle shows that cot(9) = # Now, substitute back for

your final answer.

TELE

- —1 -i—{;

It's a walk in the park.

Case 3: Secants

In the interest of space —and sanity — I'm going to skip this one. You won't
have any trouble with this case because by now you're a total expert with
Cases 1 and 2, and all the steps for Case 3 are basically the same.

~/x1-9
X

triangle, where sec (6) = &, that's 5} Now take it from there, Here's the answer

- 1_
(no peeking if you haven't done it yet): /Px?'— 9-3 arcta.n[ lff-;—q + .

Try this one. Integrate ,{ dx. I'll get you started. In Step 1, you draw a

The As, Bs, and Cxs of Partial Fractions

Just when you thought it couldn’t get any worse than trigonometric substitu-
tion, | give you the partial fractions technique.

You use the partial fractions method to integrate rational functions like

G’ +3x 2 gl s
SO The basic idea is “unadding” a fraction: 5 + 3 =% Soyoucan
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spi]t up into 1 plus é You start with a fraction like flg-{% and break it up into a

sum of fractmns, E + 3' only you are dealing with complicated rational func-

tions, not ordinary numerical fractions.

Before using the partial fractions technique, you have to check that your inte-
grand is a "proper” fraction —that’s one where the degree of the numerator is
less th"(l‘l the degree of the denominator. If the integrand is “improper,” like
f 2"' EhceE 10 +— dx, you have to first do long polynomial division to transform
ﬂm uupruper ft‘d(,tion into a sum of a polynomial (which sometimes will just be
a number) and a proper fraction. Here's the division for this improper fraction
(without explanation). I’iasically, it works jusl like regular long division.

2
X'~ 3x-2) 2"+ x*+ 0x - 10
2" —6x— 4

x*+6x— 6

With regular division, il you divide 4 inm 23, you get a quotient of 5 and a

remainder of 3, which tells you that <3 ~F equa]s 5+ 3, or 5%

the above polynomial division tells 3-'01.1 thc same thing. The quotient is 2 and
2 +x~ 10 x'+6x—6

the remainder is x* + 6x — 6, thus i, ——=equals 2 + _"Sﬁ The origi-

nal problem, }[ 2" +;x_ ;U dx, I.herefnr@ hm urne‘:fzu'x + f‘x +ﬁi§' 3 1.

The first inlcgral is just 2x. You would then do the second integral with the

The result of

partial fractions method. Here's how it works. First a basic example and then

a more advanced one.

Case 1: The denominator contains
only linear factors

Integrate f Tﬁ dx. This is a Case 1 problem because the factored
denominator (see Step 1) contains only linear factors — in other words, first
degree polynomials,

1. Factor the denominator,
5 5 5
x+x—-6 (x-2)(x+3)
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2. Break up the fraction on the right into a sum of fractions, where each
factor of the denominator in Step 1 becomes the denominator of a sep-
arate fraction. Then put unknowns in the numerator of each fraction.

5 A deiBun
(x=2)(x+ %) (x 2} (x+3)

3. Multiply both sides of this equation by the denominator of the left side.
This is algebra [, so you can't possibly want me to show the steps. Right?

5=A(x+3)+B(x-2)

4. Take the roots of the linear factors and plug them — one at a time —
into x in the equation from Step 3, and solve for the unknowns.

Ifx=2, Ifx==3,
=A(2+3)+B(2-2) 5=A(-3+3)+B(-3-2)
5=54 5=-58
A=1 B=-1
5. Plug these results into the A and B in the equation from Step 2.
5 1 =1

(x=2)(x+3) (x-2) @ (x+3)
6. Split up the original integral into the partial fractions from Step 5 and
you're home free.

5 -
)‘-x+x [}x ’{.JL delvix+3{f'r
=ln|x=2|-In|x+3|+C

= Il'llff’{ % +C (the log of a quotient rule)

Case 2: The denominator contains
irreducible quadratic factors

Sometimes you can't factor a denominator all the way down to linear factors
because some quadratics are irreducible — like prime numbers, they can’t be
split up. You can easily check whether a quadratic (ax*+ bx + ¢) is reducible
or not by checking its discriminant, b* - 4ac. If the discriminant is negative,
the quadratic is irreducible. Using the partial fractions technique with irre-
ducible guadratics is a bit different.

3
Here's a problem: Integrate f %-_Q(x—d—;l'ﬂ
XX X
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. Factor the denominator.

It's already done! Don't say [ never did anything for you.

. Break up the fraction into a sum of “partial fractions.”

If you have an irreducible quadratic factor (like the x*+ 4), the numera-
tor for that partial fraction needs two unknowns in the form Ax + B.

5x” Ox =4 =4 =B Cx+D

x(x-1) Jr"’+4)_-‘r DR ]

. Multiply both sides of this equation by the left-side denominator.

Sx'+9x—4=A(x—1)(x*+4)+B(x)(x*+4)+(Cx+D)(x)(x—1)

. Take the roots of the linear factors and plug them — one at a time —

into x in the equation from Step 3, and then solve,
fx=0, Ifx=1,
-4=4A 10=58B
A=1 B=2

Unlike in the Case 1 example, you can't solve for all the unknowns by
plugging in the roots of the linear factors, so you have more work to do.

. Plug into the Step 3 equation the known values of A and B and any

two values for x not used in Step 4 (low numbers make the arithmetic
easier) to get a system of two equations in C and D,

A=land B =2, so

Ifx=-1 Ifx=2

-18=-10-10-2C+2D 54 =8+ 32+ 4C+ 2D
2=-2C0+2D 14 =4C+2D
1==C+D 1=2C+D

. Solve the system: 1 =-C+Dand 7=2C+ D.

You get C = 2 and D = 3. Do me a favor and check my math.

. Split up the original integral and integrate.

Using the values obtained in Steps 4and 6,A=1,8=2,C=2,and D=3,
and the equation from Step 2, you can split up the original integral into
three pieces:

itE.B_Jc__fi_. fxdr'f 2 e+ fixii
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And with basic algebra, you can split up the third integral on the right
into two pieces, resulting in the final partiaj fraction decomposition:

Sx’+ 9x—4 2x g
2k rle-2 + b [ dxt [
fx(x—l)(x”+4}dx jxdx j -1 jx+4 J‘xﬂ+4dx
The first two integrals are easy. For the third, you use substitution with
t=x"+ 4 and du= 2xdx. The fourth is done with the arctangent rule from
the Cheat Sheet.
f 5x"+ 9x—4
x(x=1)(x"+4)

dx=In|x|+2In|x- l|+In|x"’+4‘+:—2iarctan(%)+c
—ln‘x(x— 1y (x*+ 4}| + %arc:ran(%)+{.‘

Case 3: The denominator contains
repeated linear or quadratic factors

If the denominator contains any repeated factors, like (x + 5)", here's what
you do.

Say you want to integrate { ——————— ¢Ix. The x in the denominator has a power

( M

of 2, so you get 2 partial fractions for the x (for the powers of 1 and 2); the (x - 1)
has a power of 3, so you get 3 partial fractions for that factor (for the powers

1, 2, and 3). Here's the general lorm for the partial fraction decomposition:

Al B D E
PP ey | I B Ly e
' - x*+8 A B Cx+D , Ex+F
t + e + _
(2e- 37 (x+ 1] O (=3) T (B=3F ' (xa1) ' (1)

the solution for these examples, The method’s the same as in Cases 1 and 2

. Here's another one. You break up

. I'm skipping

above—just messier. And, besides, ['ve got a plane to catch—off to sunny

Florida.

Bonus: Equating coefficients of like terms

Here's another method for finding your capital letter unknowns that you
should have in your bag of tricks. Say you get the following for your Step 3
equation (this comes from a problem with two irreducible quadratic factors):
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W

A\

2" x* =B+ d=(Ax+B)(x*+1)+(Cx+D)(x*+2x+2)

This equation has no linear factors, so you can't plug in the roots to get the
unknowns. Instead, expand the right side of the equation:

O+ x?=Bx+4=Ax + Ax+ Bx*+ B+ Cx'+ 2Cx* + 2Cx + Dx* + 2Dx + 2D
And collect like terms:
2x“+x2-5x+4=(A+C}x“+(B+2C+ D)xa+ (A+ 2C+2D}x+ (B+2D}

Then equate the coefficients of like terms from the left and right sides of the
equation:

2=A+C

1=8B+2C+D
-5=A+2C+2D

4=B+2D

You then solve this system of simultaneous equations to get A, B, €, and D.

You can finish the Case 2 example by using a shortcut version of the equating
of coefficients method. Look at the equation in Step 3 of Case 2, and equate
the coefficients of the x* term on the left and right sides of the equation. Can
you see, without actually doing the expansion, that on the right you'd get
(A+B+C)x*? (If you can't see this, skip this shortcut — sorry for getting
your hopes up.) So, 5x*= (A+ B+ C) x*, which means that5=A4 + B+ C, and
because A = 1 and B = Z (from Step 4), C must equal 2. Then, using these
values for A, B, and C, and any value of x (other than 0 or 1), you can get D.
How about that for a simple shortcut?

In a nutshell, you have three ways to find your A, B, €, and so on: 1) Plugging in
the roots of the linear factors of the denominator if there are any, 2) Plugging in
other values of x and solving the resulting system of equations, and 3) Equating
the coefficients of like terms. With practice, you'll get good at combining these
methods to find your unknowns quickly.




Chapter 16

Forget Dr. Phil: Use the Integral
to Solve Problems

In This Chapter
b+ One mean theorem: “Random acts of kindness!? Don't make me laugh.”
= Adding up the area between curves

- Figuring out volumes of odd shapes: deli meats, pancakes, and donuts
» Finding arc length and surface area

» The hospital rule — in case studying calculus makes you ill

Meeting integrals without manners
- The paradox of Gabriel's horn

A s I say in Chapter 13, integration is basically just adding up small pieces
of something to get the total for the whole thing — really, reatly small
pieces, actually, infinitely small pieces. Thus, the integral

20w,
5

f little piece of distance

Ssec,

tells you to add up all the little pieces of distance traveled during the 15-

second interval from 5 to 20 seconds to get the total distance traveled during
that interval,

The little piece in question is always an expression in x (or some other vari-
able). For the above integral, for instance, the little piece of distance might be
given by, say, x* dx. Then the definite integral

a1

f x*dx
&

would give you the total distance traveled. Because you're now an expert at
computing integrals like the one immediately above, your main challenge in
this chapter is simply to come up with the algebraic expression for the little
pieces you're adding up.
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In this chapter, you use integrals to solve several geometric problems — area,
volume, arc length, and surface area. You also discover how to find a func-
tion’s average height and a shortcut for limit problems — L'Hopital’s rule —
that you need for the improper (infinite) integrals at the end of the chapter.

The Mean Value Theorem for Integrals
and Average Value

3T o
Figure 16-1:
A visual
“proof” of
the mean
value
theorem for
integrals.
R

JU,
S92,
o

&= X
{2

The best way to understand the Mean Value Theorem for Integrals is with a
diagram — look at Figure 16-1.

¥ ¥ ¥
/
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s s 2 /
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too little 1oo big Just right

The graph on the left in Figure 16-1 shows a rectangle whose area is clearly
less than the area under the curve between 2 and 5. This rectangle has a
height equal to the lowest point on the curve in the interval from 2 to 5. The
middle graph shows a rectangle whose height equals the highest point on the
curve. Its area is clearly greater than the area under the curve. By now you're
thinking, “Isn’t there a rectangle taller than the short one and shorter than
the tall one whose area is the same as the area under the curve?” Of course.
And this rectangle obviously crosses the curve somewhere in the interval.
This so-called “mean value rectangle,” shown on the right, basically sums up
the Mean Value Theorem for Integrals. IU's really just common sense. But
here's the mumbo jumbo.

The Mean Value Theorem for Integrals: If f (x) s a continuous function on

the closed interval [a, b], then there exists a number ¢ in the closed interval
such that

[f(x)dx=F(c)-(b-a)

a
The theorem basically just guarantees the existence of the mean value
rectangle.




The area of the mean value rectangle — which is the same as the area under
the curve —Pqudls length times width, or base times height, right? So, if you
divide its area, j X )dx, by its base, (b—a), you get its height, f (¢). This

height is the average value of the function over the interval in question.

Average Value: The average value of a function f ( x) over a closed interval
[a, b] is

L ,{f(x}dx

which is the height of the mean valuc rectangle.

Here's an example. What's the average speed of a car between ¢ = 9 seconds
and t = 16 seconds whose speed in feet per second is given by the function
f(t)=30/1? According to the definition of average value, this average speed

is given by ﬁ f:%l]ﬁ dt.
L]
1. Determine the area under the curve between 9 and 16.

16 3
f 30/t dt

—30[—.' ]
-30(138 - 34)

3

=740
This area, by the way, is the total distance traveled from 9 to 16 seconds.
Do you see why? Consider the mean value rectangle for this problem. Its
height is a speed (because the function values, or heights, are speeds)
and its base is an amount of time, so its area is speed times time which
equals disfance. Alternatively, recall that the derivative of position is
velocity (see Chapter 12). So, the antiderivative of velocity — what [ just
did in this step — is position, and the change of position from 9 to 16
seconds gives the total distance traveled,

2. Divide this area, total distance, by the time interval from 9 to 16,
namely 7.

ed = lotal distance _ 740 feet
total time 1 seconcds

= 105.7 feet per second
The definition of average value tells you to multiply the total area by
b—IE which in this problem is = 6 l—-q-,nr 7 But because dividing by 7 is

Average spe

Chapter 16: Forget Dr. Phil: Use the Integral to Solve Problems 28 7
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the same as multiplying by Tl'" you can divide like | do in this step. It

makes more sense Lo think about these problems in terms of division:
area equals base times height, so the height of the mean value rectangle
equals its area divided by its base. :

The MVT for integrals and for
derivatives: Two peas in a pod

Remember the Mean Value Theorem for Deriva-
tives from Chapter 117 The graph on the leftin the
figure shows how it works, The basic idea is that
there's a point on the curve hetween 0 and 2
where the slope is the same as the slope of the
secantline from (0, 0) to (2, 8) — that's ?.slupe of
4. When you do the math, you get x= £§—3 for this
point. Well, itturns out that the point guaranteed
by the Mean Value Thearem far Integrals — the

point where the mean value rectangle crosses

Mean Value Theorem
for Derivatives

¥

A

124
fix}=x?

10 1
g (2,8)

L ol i 40
,/r 2
xe 243
s

*atx= % the slopeis 4 and that's the
average sfope of f between 0 and 2.

s the least slope of £ in the interval is 0.

= the greatest sfope of f in the interval is 12.

= the total rise along f from 0to 2 is 8.

the curve (shown on the right in the figure) —
has the very same x-value. Pretty nice, eh?

If you really want to understand the intimate
relationship between differentiation and inte-
gration, think long and hard about the many
connections between the two graphs in the
accompanying figure. This figure is a real gem,
if 1 do say so myself. (For more on the differen-
tiation/integration connection, check out my
other favorite, Figure 14-8.)

Mean Valug Thearem
for Integrals

1 1) = 3x2
2y {2.12)
104
B
[ mean value

~rectangle
P
4 height =4
2 i
¥ i =X

1 2
e

e

Lo

*atx= % the haightis 4 and that's the
average height of £ between 0 and 2.
= the least height of f'in the interval is 0.

s the greatest height of £'in the interval is 12.
s the total area under #'from 0 to 2 is B.
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The Area between Two Curves —
Double the Fun

SN TR VT
Figure 16-2;
The area
betwean
y=2-x" and

fromx=0
tax=1.
T

This is the first of seven topics in this chapter where your task is to come up
with an expression for a little bit of something, then add up the bits by inte-
grating. For this first problem type, the little bit is a narrow rectangle that
sits on one curve and goes up to another. Here's an example: Find the area
between y=2—x*and y = 9 X from x = 0 to x = 1. See Figure 16-2,

To get the height of the representative rectangle in Figure 16-2, subtract
the y-coordinate of its bottom from the y-coordinate of its top — that’s
(2 - x‘) -3 Its base is the infinitesimal dx. So, because area equals height
times base,

Area of representative rectangle = ((z - x“) - %x ) dx

Now you just add up the areas of all the rectangles from 0 to 1 by integrating:

S{(2-x) - 3x)ax
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Now to make things a little more twisted, in the next problem the curves
cross (see Figure 16-3). When this happens, you have to divide the total
shaded area into separate regions before integrating. Try this one; Find the
area between {fx and x" fromx=0tox=2.

y :
ooy=x

Al ;
11 i
B :
5 i
4 !
3+ i

O 2l _ ' y= 1%
5 I |

Figure 16-3: i . el -
Wha's on :

e t |—= b e X
top? - 1 2 3
I

1. Determine where the curves cross.

They cross at (1, 1) — what an amazing coincidence! 5o you've got two
separate regions — one from 0 to 1 and another from 1 to 2.

2. Figure the area of the region on the left.

For this region, ’ifx is above x". So the height of a representative rectan-
gle is ¥/ x — x", its area is height times base, or {:tfx - xa} dx, and the area
of the region is, therefore,

[ (/5 -x*)as

:%x:/!_zxtr
1]
=(§-%)-(0-0)
SBL

=

3. Figure the area of the region on the right.

Now, x* is above ¥/ x, so the height of a rectangle is x* - ¥/x and thus
you've got
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A\

3
D
=45-1.5Y2
4. Add up the areas of the two regions to get the total area.

05+45-15%2=5-15%2 = 3.11 square units

Note that the height of a representative rectangle is always its top minus its
bottom, regardless of whether these numbers are positive or negative. For

inslance, a rectangle that goes from 20 up to 30 has a height of 30 - 20, or 10;
a rectangle that goes from —3 up Lo 8 has a height of 8 — (—3), or 11; and a rec-
tangle that goes from - 15 up to —10has a height of -10 - (-15), or 5.

If you think about this top-minus-bottom method for figuring the height of a
rectangle, you can now see — assuming you didn't already see it — why the def-
inite integral of a function counts area below the x-axis as negative, (I mention
this without explanation in Chapter 13.) For example, consider Figure 164,

Figure 16-4:
What's the
shaded area?
Hint: it's not

Il’]‘

J‘ SII'I

_

-

¥ =sinlx)

} - height = sin{x}
T :'; - X
s

height = -sin(x)

If you want the total area of the shaded region shown in Figure 164, you have
to divide the shaded region into two separate pieces like you did in the last
problem. One piece goes from 0 to # and the other from 7 to —-Eﬂ';

For the first piece, from 0 to 7, a representative rectangle has a height equal

to the function itself, y = sin(x), because its top is on the function and its
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bottom is at zero — and of course, anything minus zero is itsell. So the area

of this first piece is given by the ordinary definite integral f .sin(x) dx,

b7/4
2
is at zero — recall that the x-axis is the line y = 0 — and its bottom is on

But for the second piece from 7 to 255, the top of a representative rectangle

y=sin(x), so its height is 0—sin(x), or just —sin(x). So, to get the area of
this second piece, you figure the definite integral of the negative of the func-
2 2 a2

tion, f—sin(x)dx, which is the same as — fsin(x}dx.

P P
Because this negative integral gives you the ordinary, pols“r::'ipe area of

the piece below the x-axis, the positive definite integral fsglf(qx}dx gives a
negative area, That's why if you figure the definite integlfal ,{ sin{x) dx over
the entire span, the piece below the x-axis counts as a I'Il;'ggltive area, and the

answer gives you the net of the area above the x-axis minus the area below

the axis — rather than the total shaded area,

Finding the Volumes of Weird Solids

In geometry, you learned how Lo figure the volumes of simple solids like
boxes, cylinders, and spheres. Integration enables you to calculate the
volumes of an endless variety of much more complicated shapes.

The meat-slicer method

This metaphor is actually quite accurate. Picture a hunk of mealt being cut
into very thin slices on one of those deli meat slicers. That's the basic idea
here, You slice up a three-dimensional shape, then add up the volumes of the
slices to determine the total volume.

Here's a problem: What's the volume of the solid whose length runs along the
x-axis from 0 to 7 and whose cross sections perpendicular to the x-axis are
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equilateral triangles such that the midpoints of their bases lie on the x-axis
and their top vertices are on the curve y = sin(x)? Is that a mouthful or what?
This problem is almost harder to describe and to picture than it is to do. Take
a look at this thing in Figure 16-5.

Figure 16-5:
One weird ———
hunk of '7
pastrami,
TR

1

So what's the volume?

1. Determine the area of any old cross section.
Each cross section is an equilateral triangle with a height of sin(x).

: / :
If you do the geometry, you'll see that its base is 2—:'%—?-'- times its height,

2/3

or T -sin(x) (Hint: Half of an equilateral triangle is a 30°-60°-90°

triangle). So, the triangle’s area, given by A = %{b} (h)is

e

. sin(x)] sin(x), or ——31 sin® x.

2. Find the volume of a representative slice.

The volume of a slice is just its cross-sectional area times its infinitesimal
thickness, dx. So you've got the v{:-lumfe:
Volume of representative slice = % sin®(x)dx
3. Add up the volumes of the slices from 0 to 7z by integrating.
If the following seems a bit difficult, well, heck, you better get used to it.
This is calculus after all. (Actually, it's not really that bad if you go through
it patiently, step by step.)
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f@sin’(x}dx

-‘—f.;f’: fsnﬁ{x)dx

0

/3 [f1-cos(2x)
T

=]

L]

trig integrals with sines and
cosines,case 3, from Chapter 15

:‘{? fldr—fms(,?x}dx}

- 21z [ g2 |

/3 in(27) sin(0)
=43 _0_(31112 _sm2 )}
:%{ﬂ—n—{n—m}

/3

6
= 0.91 cubic units

It's a pieee-e—ealee slice 0" meat.

The stack-of-pancakes method

This technique is basically the same as the meat slicer method — actually it's
a special case of the meat slicer method that you use when the cross-sections
are all circles. Here's how it works. Find the volume of the solid — between

x = 2 and x = 3 — generated by rotating the curve y = e* about the x-axis. See

Figure 16-6.

1. Determine the area of any old cross section or representative

pancake.

Each cross section is a circle with a radius of e*. So, its area is given by
the formula for the area of a circle, A = zr*. Plugging e* into r gives you

A—'H(e']z—a‘re“’

2. Tack on a dx to get the volume of an infinitely thin representative

pancake. T
o z gl TS
Volume of pancake= e™  dx
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|
2
18
154 representative
pancake
124
g4
51
3t 4
i
3 -4l -
; i
Gt i
_5.-
s 12T
Figure 16-6: 15+ lhickness/
Asideways .4 equals dx
stackof . |
pancakes,
Xy 1

3. Add up the volumes of the pancakes from 2 to 3 by integrating.
]

Total volume= f me™ dx
: 3
=7 f e dx
2 .
= -‘%I- [e:‘ ]j (by substitution with u=2x and du= 2dx)

=

== b48 cubic units

The stack-of-donuts-that-
have-been-sat-on method

Other books call this the washer method, but what fun is that? The only dif-
ference between the donut method and the pancake method is that now each
slice has a hole in its middle that you have to subtract. There’s nothing to it.

Here you go. Take the area bounded by y=x*and y = /x, and generate a
solid by revolving that area about the x-axis. See Figure 16-7.

295
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Figure 16-7:
A sideways
stack of
donuts —
just add up
the volumas
of all the
donuts.

Figure 16-8:
The shaded
area equals
AR = mr®
The whofe
minus the
hole —
getit?
TR S

¥ y=axt ¥y represantative
! donut or washer
1 1.1} y=Ax 14 A (11)
now revolve this
shaded araa
aboutthe x-axis
~ + =X - X

thicknass = dx

Just think: All the forces of the evolving universe and all the twists and turns
of your life have brought you to this moment when you are finally able to
calculate the volume of this solid — something for your diary. So what's the
volume?

1. Determine where the two curves intersect,

It should take very little trial and error to see that y=x*and y=/x
intersect at x = 0 and x = 1 — how nice is that? So the solid in question
spans the interval on the x-axis from 0 to 1.

2. Figure the area of a thin cross-sectional donut or washer.

Each slice has the shape of a donut — see Figure 16-8 — so its area
equals the area of the entire circle minus the area of the hole,

The area of the circle minus the hole is ZR* - 7r%, where R is the outer
radius (the big radius) and r is the radius of the hole (the little radius).
For this problem, the outer radius is /x and the radius of the hole is x°,
so that gives you
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B\

A=r (/%) - n(xt)*
=x - Ax!
3. Multiply this area by the thickness, dx, to get the volume of a repre-
sentative smashed donut.
Volume = (a'rx - 7ix') dx
4. Add up the volumes of the paper-thin donuts from 0 to 1 by integrating.

1
Total volume= f (mc - mx*) dx
0

= 0.94 cubic units

Focus on the simple fact that the area of a donut or washer is the area of the
entire disk, 7R?, min:‘us the area of the hole, ir*; Area= 7R* - 7ir*. When you
integrate, you get f(?ﬂf’ - m,z) dx. This is the same, of course, as

T j .(R“— r“) dx, which is the formula given in most books. But if you just
learn that by rote, you may forget it. You're more likely remember how to do

these problems if you understand the simple big-circle-minus-little-circle idea.

The nested-Russian-dolls method

Now you're going to cut up a solid into thin concentric cylinders and then
add up the volumes of all the cylinders. It's kinda like how those nested
Russian dolls fit inside each other. Or imagine a soup can that somehow has
many paper labels, each one covering the one beneath it. Or picture one of
those clothes de-linters with the sticky papers you peel off. Each soup can
label or piece of sticky paper is a eylindrical shell — before you tear It off,
of course. After you tear it off, it's an ordinary rectangle.

Here's a problem: A solid is generated by taking the area bounded by the
x-axis, the lines x = 2, x = 3, and y = ¢”, and then revolving it about the y-axis.
See Figure 16-9.
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T
Figure 16-9:
A shape sort
of like the
Roman
coliseum
and one

of its
representa-
tive shells,
s e m =

\¥
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reprasentative shell

y= e
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What's the volume?

1. Determine the area of a representative cylindrical shell.

When picturing a representative shell, focus on a shell that'’s in no
place in particular. Figure 16-9 shows such a generic shell. Its radius

is unknown, x, and its height is the height of the curve at x, namely e”,
If, instead, you use a special shell like the outer-most shell with a radius
of 3, you're more likely to make the mistake of thinking that a represen-
tative shell has some known radius like 3 or a known height like e®. Both
the radius and the height are unknown. (This same advice applies to

pancake and donut problems.)

Each representative shell, like the soup can label or the sticky sheet
from a de-linter, is just a rectangle whose area is, of course, length times
width. The rectangular soup can label goes all the way around the can,
so its length is the circumference of the can, namely 27r; the width of
the label is the height of the can. So now you've got the general formula

for the area of a representative shell:

Area= length- width

=27r h
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For the current problem, you plug in x for the radius and e for the
height, giving you the area of a representative shell:

Area of shell=2xx - e*

2. Multiply the area by the thickness of the shell, dx, to get its volume.,
Volume of representative sheli= 2xe” dx

3. Add up the volumes of all the shells from 2 to 3 by integrating.
Total volume= J‘ 2rxe” dx

=27 fxe’dr
2

=27 |xe* - e*]z (integration by parts)

= 2??(363— "~ (2e*~ e*])

=27 (2{3’ - ez}

= 206 cubic units

F With the meat-slicer, pancake, and donut methods, it's usually pretty obvious

what the limits of integration should be (recall that the limits of integration are,
for example, the 1 and 5 in f ). With eylindrical shells, however, it's not
always quite as clear. Here'g a tip. You integrate from the right edge of the
smallest cylinder to the right edge of the biggest cylinder (like from 2 to 3 in
the previous problem). And note that you never integrate from the left edge

to the right edge of the biggest cylinder (like from =3 to 3).

Analyzing Arc Length

5o far in this chapter, you've added up the areas of thin rectangles to get total
area, the volumes of thin slices to get total volume, and the volumes of thin
cylinders also to get total volume. Now, you're going to add up minute
lengths along a curve, an “are,” to get the whole length.

[ could just give you the formula for arc length, but I'd rather show you why it
works and how to derive it. Lucky you.

The idea is to divide a length of curve into small sections, figure the length of
each section, and then add up all the lengths. Figure 16-10 shows how each
section of a curve can be approximated by the hypotenuse of a tiny right
triangle.
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Figure 16-10;
The
Pythagorean
Theorem,
al+ b'=ct,
isthe key to
the arc
length
formula.
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You can imagine that as you zoom in further and further, dividing the curve
into more and more sectlons, the minute sections get straighter and
straighter and the hypotenuses better and better approximate the curve.
That's why — when this process of adding up smaller and smaller sections is
taken to the limit — you get the precise length of the curve.

So, all you have to do is add up all the hypotenuses along the curve between
your start and finish points. The lengths of the legs of each infinitesimal trian-
gle are dx and dy, and thus the length of the hypotenuse — given by the
Pythagorean Theorem — is

T

To add up all the hypotenuses from a to b along the curve, you just integrate:

[

| J(@x)*+(ay)

A little tweaking and you have the formula for arc length. First, factor out a
{(dx)}* under the square root and simplify:
2
1+ [f‘l)
dx

f5 (ax)* ff{dx}*

Now you can take the square root of (dx)* — that's dx, of course — and bring
it outside the radical, and, voila, you've got the formula.

(dy)’
(dx)*

1+

Arc Length: The arc length along a curve, y=f (x), from a to b, is given by the

following integral:
[
: dy
J{ fl - (E) dx
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The expression inside this integral is simply the length of a representative
hypotenuse.

Try this one: What's the length along y=(x—1)% fromx = 1 to x = 5?

1. Take the derivative of your function.

y=(x=-1)%
d g
&= 9 (x=1)%

2. Plug this into the formula and integrate.

@)

/1+ S-4Y ax

=fj1+-q(x—1)dx

(-3
{t-45-7

saflo

o

(You see how | got that, don't you? It's the guess-and-check integration
technique with the reverse power rule. The % is the tweak amount you
need because of the coeflicient %.)

=[L{9x— 5)% ] (Algebra questions are strictly prohibited!)

z?(/“”]J 778

=37((/10)"-1)
a9, D?umh

Now if you ever find yourself on a road with the shape of y=(x—1)"* and
your odometer’s broken, you can figure the exact length of your drive. Your
friends will be very impressed — or very concerned.

Surfaces of Revolution —
Pass the Bottle 'Round

A surface of revolution is a three-dimensional surface with circular cross sec-
tions, like a vase or a bell or a wine bottle. For these problems, you divide the
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Figure 16-11:
The wing
bottle
prablem. If
you're sick
of calculus,
chill out and
take a look
at Wine For
Dummies —
it's a best
seller!

ESa ey

surface into narrow circular bands, figure the surface area of a representative
band, and then just add up the areas of all the bands Lo get the total surface
area, Figure 16-11 shows such a shape with a representative band.

width of
rectangle’

y=fix

radius of
reprasentative
—band equals f{x}

length of representative band or "rectangle”
aquals the circumference of the band, 2rr.

What's the surface area of a representative band? Well, if you cut the band
and unroll it, you get sort of a long, narrow rectangle whose area, of course,

is length times width. The rectangle wraps around the whole circular surface,
so its length is the circumlference of the circular cross section, or 27r, where r
is the height of the function (for garden-variety problems anyway). The width

of the rectangle or band is the same as the length of the infinitesimal

: Ay
hypotenuse you used in the section on arc length, namely I,-'1 o (ﬁ) dx.
§

Thus, the surface area of a representative band, from length times width, is

[ 2
27r |1 +(g—i) dx, which brings us to the formula.
I. o

Surface of Revolution: A surface generated by revolving a function, y = f ( x),
about an axis has a surface area — between a and b — given by the following
integral:

i = h r .
; e e dy\*
! Zﬂrl'l,l'l'(dx) adx = zﬂj J'ylh'i-(-('&'] dx
If the axis of revolution is the x-axis, r will equal f (x}— as shown in Figure
16-11. If the axis of revolution is some other line, like y = 5, it's a bit more
complicated — something to look forward to.
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Figure 16-12:
A surface of
revolution —
this ona's
shaped sort
of like the
end of a
trumpet,

L r=rman e

Now try one: What'’s the surface area — between x = 1 and x = 2 — of the sur-
face generated by revolving y = x* about the x-axis. See Figure 16-12,

¥
3
10 (
2.8
ol )
64 y
ll-'—
2+ {1,1)
4-"_'-’. A y
-« =" i e X
0 et il
_2.._
s
-6 .
representative
B band
RIEE
Y

1. Take the derivative of your function.
y=x

deaie

MNow you can finish the problem by just plugging everything into the lor-

mula, but [ want to do it step by step to reinforce the idea that whenever

vou integrate, you write down a representative little bit of something —

that’s the integrand — then you add up all the little bits by integrating.

2. Figure the surface area of a represcentative narrow band.

The radius of the band is x*, so its circumference is 277x" — that’s the
band’s “length.” Its width, a tiny hypotenuse, is /1 + (%) dx=

v,ﬁ’l + (?u(?:l “dx. And, thus, its area — length times width —is

Zﬂ'x“vfl + (sz}:’dx.

303
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3. Add up the areas of all the bands from 1 to 2 by integrating.
[ 1 () ax
1

2
:2;:J‘ x' /149 dx
1

2 +
o i < (The 36 is the tweak amount for the
el f3hx 149X dX oy bstitution: see next line of equation.)
1

145

-% {""; du (substitution with u= 1 + 9x*, du= 36x* dx;
i whenx=1,u = 10; when x = 2, u = 145)
145
~18 [ 3
IB(% ”“‘/""' 10’/)

= 199.5 square units

L’Hépital’s Rule: Calculus for the Sick

L'Hépital's rule is a great shorteut for doing limit problmm Remember

limits — from way back in Chapters 7 and 8 — like hm = ,?'? By the way,

if you're wondering why I'm showing you this now, Il s because (a) you may
need it someday to solve some improper integral problems (the topic of the
next section in this chapter), though we don't do such an example, and (b)

you also need it for some infinite series problems in Chapter 17.

As with most limit problems — not counting no-brainer problems — you
can't do lim ”;' é} with direct substitution: plugging 3 into x gives you g.
which is undefined. In Chapter 8, you factor the numerator into (x—3)(x+ 3)

and then cancel the (x - 3). That leaves you with lim (x + 3), which equals 6.

Now watch how easy it is to take the limit with L'Hépital’s rule. Simply take
the derivative of the numerator and denominator. Don’t use the quotient rule:
just take the (Ierlmtives of the numerator and denominator separately. The
derivative of x*~ 9 is 2x and the derivative of x - 3 is 1. LUHopital's rule lets
you replace the numerator and denominator by their derivatives like this:

o e x
lm 3= = tim B
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The new limit is a no-brainer: lim Zix = i—i;j =6

That's all there is to it. U'Hopital's rule transforms a limit you can’t do with
direct substilution into one you can do with substitution. That’s what makes
it such a great shortcut.,

Here's the mumbo jumnbo.

f
L'Hopital's rule: Let f and g be differentiable functions. If the limit of ﬁt_% as
x approaches ¢ produces H or %—% when you substitute the value of ¢ into x,

then

e )
!'mrg{x] = .xl-”.“rg'{x}

Note that ¢ can be a number or + o,

In{x)
Here's an example involving 5 What’s lim i ]I? Direct substitution gives

you %E, 50 you can use L'Hopital's rule. The derivative of In(x) is % and the

derivative of x is 1, s0

1 1
Mg LI e
1 1 1

A
Try another one: Evaluate limh ¢ x_ I. Substitution gives you %sn ['Hapital's

rule applies. The derivative of €™ - 1 is 3™ and the derivative of x is 1, thus

el w R s T
ImSse==si limsSs— = fr==3

£ -0

NGy
&7 In The mumbo jumbo says that to use L'Hopital’s rule, substitution must
2
‘ produce either %nr i—z You must get one of these acceptable “indetermi-
- nate” forms in order to apply the shortcut. Don't forget to check this.

Getting unacceptable forms into shape

If substitution produces one of the unacceptable forms, +o0-0 or ac — e,
you first have to tweak the problem to get an acceptable form before using
L'Hopital's rule.
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For instance, find hm ( % ‘fx) Substitution gives you (- = so you've got to
tweak it: &

Iim{v 7 *’x = lim

X - £ = o

Now you've got the = = case, so you're all Scl to use L'Hopital’s rule. The deriv-

ative of /x is —— > I ;md the derivative of e” is e*, so
v A

1 1
/ 2 /x 1
Ilm{-"&f]zlim 2.'.,:r :2““_?" —%—%'—U
X

X o= o [ (-4

Three more unacceptable forms

When substitution produces 1=, 0", or =", use the following logarithm trick to
get an acceptable indeterminate form. For example, find lim (sinx)* (recall

x = 0
from Chapter 7 that lim means that x approaches 0 from the right only; this

X =0

is a one-sided limit). Substitution gives you 0", so you do the following.

1. Set the limit equal to y.

y=lim (sinx)”
X = 0"
2. Take the log of both sides.

In(y}:ln( llrn (sinx)* )
In(y) = lim (I 1(sinx)” } (take my word for it)
x =
=lim (xIn(sinx)) (Better review the log rules in Chapter 4

-0

if you don't get this.)
3. This limit is a 0 - - oc case, so tweak it.

ARas In(sinx)
¥ 0 1
=

4, Now you've got a —= case, 80 you can use L'Hdpital's rule.

1
sin(x)

The derivative of In (sin (x )} is

-cos{x),orcot(x), and the deriva-
tive of 31( is _xl 50
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= lim eqlx
X - 0 —

5. Thisis a % case, 50 use L'Hopital’s rule again.

= Iim( —an )
v otl sec’ x
=9
1
=0
Hold your horses! This is not the answer.

6. Solve for y.

Do you see that the answer of 0 in Step 5 is the answer Lo the equation
from way back in Step 2 —In(y) —_‘li.rlill_[xln (sinx))? So, the 0 in Step 5
tells you that In( y ) = 0. Now solve for y:
In(y)=0
y=1

Because you set your limit equal to y in Step 1, this, finally, is your
answer:

lim (sinx) =1

‘g.%'-@_{ Don't make the mistake of thinking that you can use ordinary arithmelic or the
< S laws of exponents when dealing with any of the acceptable or unacceptable
C‘) indeterminate forms. It might look like oo — oo should equal zero, for example,
- but it doesn’t. By the same token, 0- oo # 0, o7l 2#1,0°% L% L and 17# 1.

Improper Integrals: Just Look at the Way
That ﬁrteqm! Is Holding Its Fork!

Definite integrals are improper when they go infinitely far up, down, right, or
4

left. They go up or down infinitely far in problems like J‘ ﬁdxthm have

one or more vertical asymptotes. They go infinitely far'to the right or left in

1
x'+1

e

problems like f%dx or j dx, where one or both of the limits of

5
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integration is infinite. (There are a couple other weird types of improper inte-
grals, but they're rare — don't worry about them.) It would seem to make
sense Lo just use the term infinite instead of improper to describe these inte-
grals, except [or the remarkable fact that many of these “infinite” integrals

have finite area. More about this in a minute.

You solve both types of improper integrals by turning them into limit prob-
lems. You can't just do them the regular way. Take a look at some examples.

Improper integrals with vertical
asymptotes

A vertical asymptote may be at the edge of the area in question or in the
middle of it.

A vertical asymptote at one of the limits of integration
Whalt's Lthe area under y= 1 from 0 to 1? This function is undefined at x = 0,

and it has a vertical asymptote there. So you've got to turn the delinite inte-
gral into a limit:

Y S the area in question is to the right of zero,
f?rfx'—ltrll f?n‘x '
- e - 0" -

LU €

s0 ¢ approaches zero from the right

: 1]
= lim |_T| (reverse power rule)

:L.”,I}f-((h” 3 (‘%))

This area is infinite, which probably doesn’t surprise you because the curve
goes up to infinity. But hold on to your hat, despite the fact that the next
function also goes up to infinity at x = 0, its area is finite!

Find the area under y = %,_ from 0 to 1. This function is also undefined at x = 0,
Yx

¥
so the process is the same as in the previous example,
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)| A da g
,;[V;dx cl{n&'!y’xr

O

i Al
= lim | % X l (reverse power rule)

Convergence and Divergence: You say that an improper integral converges if
the limit exists, that is, if the limit equals a finite number like in the second
example. Otherwise, an improper integral is said to diverge — like in the first
example. When an improper integral diverges, the area in question (or part of
it) equals co or —co,

A vertical asymptote between the limits of integration

[f the undefined point of the integrand is somewhere in between the limits
of integration, you split the integral in two — at the unde[lned point — then

turn each integral into a limit and go from there. Evaluate f v dx. This inte-
grand is undefined at x = 0.

1. Split the integral in two at the undefined point.
L 1] ]
1 1 P |
——=dx= | —=dx+ | ——=dx
,’r Yx _-I’r Yx uj Yx
2. Turn each integral into a limit and evaluate.

[}
For the f integral, thgz area is to the left of zero, so ¢ approaches zero
from the'left. For the f integral, the area is to the right of zero, so ¢

approaches zero from the right

:clim_jrdx + :lldn:] ./x

~lim |3 /] i |~_ ;/,l
:Il_nl}IZx | +r|'|_n":_ 5 X

e fl a5 =
_cll!'{]}_(z /- 2) + ‘I|_n;| (ﬁ c/)
0y

== + 6
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If you fail to notice that an integral has an undefined point between the limits
of integration, and you intcgrale the ordinary way, you may get the wrong
answer. The above problem, f —— a[r happens to work out right if you do it
the ordinary way. However, Ify-::u do J{ —5 dx the ordinary way, not only do
you get the wrong answer, you get the total]y absurd answer of negative 2,
despite the fact that the function is positive from —1tol The moral: Don't
risk it.

If either part of the split up integral diverges, the original integral diverges.

You can’t get, say, —oo for one part and oo for the other part and add them up
to get zero,

Improper integrals with one or two
infinite limits of integration

You do these improper integrals by turning them into limits where ¢

approaches infinity or negative infinity. Here are two examples: f L dx

anl:lfx

-

[ =lim [ <
I

- 18] &
_.-h!Ill_T |

So this improper integral converges.

In the next integral, the denominator is smaller — X instead of .r — and thus

the fraction is bigger, so you'd expect dx to be bigger than L d.x',
L8 A

which it is. But it's not just bigger, it's wuy, way bigger. ;
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[Fdx=lim [ dx

1 1
= lim [Inx];
=lim (Inc—Inl)
= m—{]
=

This improper integral diverges.

Figure 16-13 shows these two functions. The area under # from 1 to oo is the

same as the area of the 1-by-1 square — roughly, 1 square centimeter. The
area under % from 1 to oo is much, much bigger — actually, it's infinitely bigger
than a square large enough to enclose the Milky Way Galaxy. Their shapes are
quite similar, but their areas couldn’t be more ditferent.

e
Figura 16-13:
The area
under ~I—,
from 1 to'oo
and the area
under 71.-
from 110 ce.
] 1

By the way, these two functions make another appearance in Chapter 17 on
infinite series. Deciding whether an infinite series converges or diverges —
a distinction quite similar to the difference between these two functions —
is one of the main topics in Chapter 17.

When both of the limits of integration are infinite, you split the integral in two
and turn each part into a limit. Splitting up the integral at x = 0 is convenient
because zero's an easy number to deal with, but you can split it up anywhere
you like. Zero may also seem like a good choice because it looks like it's in the
middle between - oo and o, But that's an illusion because there is no middle
between —c and =, or you could say that any point on the x-axis is the middle.

Here's an example: f ﬁ dx
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1. Splll the integral in two.

fxlhldx_f Zep ke )‘

2. Turn cach part into a limit.

:Iim fux d.r+|1rnf

3. Evaluate eaLh part and add up the results.

dx

dx

= lim |arctan(x)] -I-lim[art'.tan(x}]

-Ilmfarctan{[]) arctan{f.))+Ihn{drtmn(r) arctan(0))

i(”'(’%))"’(f'“)

If either “half” integral diverges, the whole diverges.

Blowing Gabriel’s horn

This horn problem may blow your mind.

Gabriel’s horn is the solid generated by revolving about the x-axis the
unbounded region between y = % and the x-axis (for x = 1). See Figure 16-14.

Playing this instrument poses several not-insignificant challenges: 1) It has no
end for you to put in your mouth; 2) Even if it did, it would take you till the
end of time to reach the end; 3) Even if you could reach the end and put it in
your mouth, you couldn’t force any air through it because the hole is infi-
nitely small; 4) Even if you could blow the horn, it'd be kind of pointless
because it would take an infinite amount of time for the sound to come out.
There are additional difficulties — infinite weight, doesn’t fit in universe, and
so on — but | suspect you get the picture.

Believe it or not, Gabriel's horn has a finite volume, but an infinite surface area!

You use the pancake method to figure its volume (see the stack of pancakes
section). Recall that the volume of each represenlative pancake i 15 ar’ dx. For
this problem, the radius is }:- 50 the little bit of volume is 7 ( }r) dx. You find

the total volume by adding up the little bits from 1 to co.



Chapter 16: Forget Dr. Phil: Use the Integral to Solve Problems 3 ’3

¥
Rt =%
N § i 7 L T ik
T e e e e o SRR,
R R
Figure 16-14: L
Gabriel's
horn.
R 4
i 1 2
Vn."ume'—j IE(T) dx
1
F 1
=x | —dx
Ui
[ calculated in the section on improper Integrals that f =1, s0 the

volume is 7 - 1, or just 7.

To determine the surface area, you first need the function's derivative
(see the “Surfaces of Revolution” section):

o
dy
dx = xf

Now plug everything into the surface area Iurmula-

Strface Area= 21 f ( L ]

; b 1
=27 | = 1+ d
J‘ x,/1+ 7 dx
We determined that j + dx= oo, and because Jl + — is always greater
than + .r in the interval [1,00], f ./l + —+ dx must also equal c. Finally, 277
times o is still oo, of course, so the surfacc area is infinite.

Bonus question for those with a philosophical bent: Assuming Gabriel is
amnipotent, could he overcome the above-mentioned difficulties and blow
this horn? Hint: All the calculus in the world won't help you with this one,.






Chapter 17
Infinite Series
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In This Chapter
- Segueing from sequences into series
= An infinite series — the rain delays just wouldn't end

- Getting musical with the harmonic series
= Taking a close look at telescoping series
= Testing for convergence

= Rooting for the root test

» Analyzing alternating series

s with just about every topic in calculus, the subject of this chapter

involves the idea of infinity — specifically, series that continue to
infinity. An Infinite series is the sum of an endless list of numbers like
gtagtztot.... Because the list is unending, it's not surprising that
such a sum can be infinite. What's remarkable is that some infinite series
add up Lo a finite number. This chapter covers ten Lests for deciding whether
the sum of a series is finite or infinite.

What you do in this chapter is quite fantastic when you think about it. Consider
the series 1.1 + (.01 + 0.001 + 0.0001 + . . . . If you go out far enough, you'll find

a number that has so many zeros to the right of the decimal point that even if
each zero were as small as a proton, there wouldn’t be enough room in the
entire universe just to write it down! As vast as our universe Is, anything in it —
say the number of elementary particles — is a proverbial drop in the bucket
next to the things you look at in this chapter. Actually, not even a drop in the
bucket, because next Lo infinity, any finite thing amounts to nothing. You've
probably heard Carl Sagan get emotional about the “billions and billions and
billions™ of stars in our galaxy. “Billions and billions™ — pfiffffit.
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Sequences and Series: What
They're All About

Here’s a sequence: E]’.’ 711-. %, I-lﬁ, .. Change the commas to addition signs and
M
T

Jeven]

you've got a serfes: 5 2 tEtigto- Pretty simple, eh? Investigating

series is what this chapter is all about, but | need to briefly discuss

sequences to lay the groundwork for series,

Stringing sequences

A sequence is simply a list of numbers. An infinite sequence is an unending list
of numbers. That's the only kind we're interested in here, and whenever the
term sequence (or series) is used alone, it means an infinite sequence (or infi-
nite series).

Here's the general form for a sequence:

y, tha, Oy, dj,...0,

where i runs from 1 (usually) to infinity (sometimes n starts at zero or
another number). The fourth term of this sequence, for example, is a, (read

“a sub 4"); the nth term is a, (read “e sub r"). The thing we care about is what
happens to a sequence infinitely far out to the right, or as mathematicians
say, “in the limit.” A shorthand notation for this sequence is {a, }.

Way back in the Introduction, | discussed the following sequence, It's defined
by the formula a,= 2',,

1L b0 LG oo &
PRAA I LT s
What happens to this sequence in the limit is obvious, Each term gets smaller

and smaller, right? And if you go out far enough, you can find a term as close
to zero as you want, right? So,

Tl 4,
lim 9= lim 37 = 9= =55 =0

Recall from Chapters 7 and 8 how to interpret this limit. As n approaches
infinity (but never gets there), a. gets closer and closer to zero.

Convergence and divergence of sequences

Because the limit of the previous sequence is a finite number, you say that
the sequence converges.



RS
Figure 17-1:
The points
on the curve
F(x) =5
make up the
sequaqce

F .
ELEE T I T

Convergence and Divergence of a Sequence: For any sequence {a,}, if
lima, = L, where L is a real number, then the sequence converges to L.

o - o

Otherwise, the sequence is said to diverge.

Sequences that converge sort of settle down to some particular number —
plus or minus some miniscule amount — after you go out to the right far
enough. Sequences that diverge never settle down. Instead, diverging
sequences might . . .

|l » Increase forever, in which case lima, = 0. Such a sequence is said to

A==

[ “blow up.” A sequence can also equal negative infinity in the limit.
= Oscillate (go up and down) like the sequencel, -1, 1, -1, 1, -1...

Uy Exhibit no pattern at all — this is rare.

Sequences and functions go hand in hand

%. %, %""'EI‘T can be thought of as an infinite set of
discrete points (discrefe is a fancy math word for separate) along the continu-

o el dul L
I'he sequence [ 2,.} =%

ous function f (x) = 2]—‘ Figure 17-1 shows the curve f(x) = 2—11 and the points
on the curve that make up the sequence.

y
a_h
2 0=
\ s
Sl oy
~__ fl2)=7 ] , ,
— ! M=y fa-g fl5)=g
———
: 4 } ——— ? I X
1 2 3 4 5 6

The sequence is made up of the outputs (the y-values) of the function where
the inputs (the x-values) are positive integers (1, 2, 3,4, .. .).

Chapter 17: Infinite Series 3 1 7
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A sequence and the related function go hand in hand, If the limit of the func-
tion as x approaches infinity is some finite number, L, then the limit of the
sequence is also L, and thus, the sequence converges Lo L. Also the graph of
such a convergent function/sequence pair has a horizontal asymptote at L,
the graph in Figure 17-1 has an asymptote with the equation y = 0.

Determining limits with L'Hépital’s rule
Remember L'Hopital's rule from Chapter 16? ‘r'nu‘re going to use it now to find
limits of sequences. Does the sequence an= 2,. converge or diverge? By plug-

ging in 1, then 2, then 3, and so on, into 2...yuu generate the first few terms of
the sequence:

19,2536 49 64
> 877 327 64" 128 256

P3|

What do you think? After going up for a couple terms, the sequence goes down
and it appears that it'll keep going down — looks like it will converge to zero,
L'Hupit.il::-, rule proves it. You use the rule to determine the limit of the function

f(x)= 24 which goes hand in hand with the sequence j

To use L'Hopital's rule, take the derivative of the numerator and the deriva-
tive of the denominator.

For this problem, you have to use L'Hopital's rule twice:

‘H

] zx 2
\].;:_u.lgx lim 9¥[n2 ~ im 37 [n2n2

2
ZE:U

Because the limit of the function is 0, so is the limit of the sequence, and thus
the sequence % converges to zero.

Summing sevies

An infinite series (or just series for short) is simply the adding up of the infinite
number of terms of a sequence, Here's the sequence from the previous section
again, a,= 2,

1S Eg Ak
2UAMESIS] Gl

And here’s the series associated with this sequence:
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You can use fancy summation notation to write this sum in a more compact
form;

25

n=l

The summation symbol tells you to plug 1 in for n, then 2, then 3, and so on,
and then to add up all the terms (more on summation notation in Chapter 13).
Nitpickers may point out that you can't actually add up an infinite number of
terms. Okay, so here's the fine print for the nitpickers. An infinite sum is tech-
nically a limit. In other words,

2 L < lim i o

rJ-Ier b~ "‘:Jr-l?'lIJ
To find an infinite sum, you take a limit — just like you do for improper (infi-
nite) intcgrjgls (see Chapter 16). From here on, though, | just write infinite
sums like 2 gl and dispense with the limit mumbo jumbo.

mel

Partial sums

Continuing with the same series, take a look at how the sum grows by listing
the “sum” of one term (kind of like the sound of one hand clapping), the sum
of two terms, three terms, four, and so on;

Si=4
&:%+%_%
&=%+%+%=%

sl ol Ll dwnely I
5"_2F4FHFIG'32|64+"'+2"

Each of these sums is called a parfial sum of the series,

Partial Sum: The nth partial sum, S,, of an infinite series is the sum of the
first n terms of the series.

The convergence or divergence of a series — the main event

If you now list the preceding partial sums, you have the following sequence of
partial sums:

N[
oo|=1
|

1
zr

|
f=
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The main point of this chapter is figuring out whether such a sequence of
partial sums converges — hones in on a finite number — or diverges, If the
sequence of partial sums converges, you say that the series converges:
otherwise, the sequence of partial sums diverges and you say that the
series diverges, The rest of this chapter is devoted to the many techniques
used in making this determination,

By the way, if you're getting a bit confused by the terms sequence and series
and the connection between them, you're not alone. Keeping the ideas

straight can be tricky. For starters, note that there are two sequences associ-
il ] 1

ated with every series, With the series gtgtgtigte for example,
you have the underlying sequence, %, %, %. %1. .., and also the sequence of

partial sums, %, %, g;, }—{53,. ... It's not a bad idea to try to keep these things

straight, but all you really need to worry about is whether the series adds up
to some finite number or not. If it does, it converges; if not, it diverges. The
reason for getting into the somewhat confusing notion of a sequence of par-
tial sums is that the definitions of convergence and divergence are based on
the behavior of sequences, not series. But — [ hope it goes without saying —
ideas are more important than terminology, and again, the important idea

you need to focus on is whether or not a series sums up to a finite number.

What about the previous series? Does it converge or diverge? It shouldn't
take too much imagination to see the following pattern:

.5’1— % —l_%
ool a il
S 4 =1 4
N R T BT
Si= T =1-3
5
S«=15=1"1¢g
oF S B
'sﬁ‘_l 2ﬂ

Finding the limit of this sequence of partial sums is a no brainer:

tim 5= lim (1 7)1 - = 1-0=1
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So, this series converges to 1. In symbols,

i%=%+%+l+l+ ....... =il

n=1

By the way, this may remind you of that paradox about walking toward a wall,
where your first step is half way to the wall, your second step is half of the
remaining distance, your third step is half the remaining distance, and s0 on.
Will you ever get to the wall? Answer: It depends. More about that later.

Convergence or Divergence?
That Is the Question

This section contains nine ways of determining whether a series converges
or diverges. In the next section on alternating series, | look at a tenth way,
and then [ summarize all ten in the final section.

A no-brainer divergence test:
The nth term test

If the individual terms of a series (in other words, the terms of the series’
underlying sequence) do not converge to zero, then the series must diverge.
This is the nth term test for divergence.

The nth Term Test: If lima,# 0, then Za,. diverges. (I presume you figured
out that with this naked summation symbol, n runs from 1 to infinity.)

If you think aboul it, this is just common sense. When a series converges, the
sum is honing in on a certain number. The only way this can happen is when
the numbers being added are getting infinitesimally small — like in the series
['ve been talking about; % 1P 7rar é— + % +.... Imagine, in‘swagl, that the terms
of a series are converging, say, to 1, like in the series % t3tgt % + % Foer
generated by the formula a, = ﬁ In that case, when you add up the terms,
you are adding numbers extremely close to 1 over and over and over forever —
and this must add up to infinity, So, in order for a series to converge, the terms
of the series must converge to zero. But make sure you understand what this
fiith term test does not say.
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When the terms of a series converge to zero, that does not guarantee that the
series converges. In hifalutin logicianese — the fact that the terms of a series

converge to zero is a necessary but not sufficient condition for concluding that
the series converges to a finite sum.

Because this test is often very easy to apply, it should be one of the first
things you check when trying to determine whether a series converges or
diverges. For example, if you're asked to determine whether E 1+ %) § con-
verges or diverges, note that every term of this series is a number greater
than 1 being raised to a positive power. This always results in a number
greater than 1, and thus, the terms of this series do not converge to zero,
and the series must therefore diverge.

The nth term test not only works for ordinary positive series like the ones in
this section, but it also works for series with positive and negative terms.
(More about this at the end of this chapter in the “Alternating Series” section.)

Three basic series and their
convergence/divergence tests

Geometric series and so-called p-series are relatively simple but important
series that you can use as benchmarks when determining the convergence
or divergence of more complicated series, Telescoping series don’t come up
much, but many calc texts describe them, so who am I to buck tradition?

Geometric series
A geometric series is a series of the form:

a+artar*+art+ar'+... = 2 ar"

n=

The first term, a, Is called the leading term. Each term after the first equals
the preceding term multiplied by r, which is called the ratio.

For example, if a is 5 and r is 3, you get

54+5-3+5-3°+5:3%+..,
=5+15+45+135+...

You just multiply each term by 3 to get the next term. By the way, the 3 in this
example is called the ratio because the ratio of any term divided by its pre-
ceding term equals 3, but I think it makes a lot more sense to think of the 3 as
your multiplier.
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If @is 100 and ris 0.1, you get

100+ 100- 0.1 + 100- 0.1°+ 100 - 0.1*+ 100 0.1" +
=100+10+1+0.1+0.01+...

II that rings a bell, you've got a good memory. It's the series [or Lthe Achilles
versus the tortoise paradox (go way back to Chapter 2).
And if a 1s ¥ and r Is also ¥4, you get the series I've been Lalking so much about:

Al b b Al
D A BTG s

The convergence/divergence rule for geometric series is a snap.

Geometric Series Rule: If 0 < |r| < 1, the geometric series 2, ar" converges to

n=0
= |, the series diverges. (Note that this rule works when =1 <r< (),
in which case you get an alternating series; more about that at the end of this

chapter.)

In the first example, g = 5 and r = 3, so the series diverges. In the second

100 _ 100
1-01" 09 = 1114
That's the answer to the Achilles versus the tortoise problem: Achilles passes

example, a is 100 and ris 0.1, so the series converges to —a—

the tortoise after running 1114 mctfgrs And in the third example, a = %2 and

r =, so the series converges to —— AV 1. This is how far you walk if you
start 1 yard from the wall, then step half way to the wall, then half of the
remaining distance, and so on and so on. You take an infinite number of
steps, but travel a mere yard. And how long will it take you to get to the wall?
Well, if you keep up a constant speed and don’t pause between steps (which
of course is impossible), you'll get there in the same amount of time it would
take you to walk any-old yard. If you do pause between steps, even for a bil-
lionth of a second, you'll never get to the wall.

p-series
A p-series is of the form:

= al 2 bl 1

=1

(where p is a positive power). The p-series for p = 1 is called the harmonic
series. Here it is:

L5V W) Ul ot G
UEPR Rt b i
Although this grows very slowly — after 10,000 terms, the sum is only about

9.79! — the harmonic series in fact diverges to infinity.

323
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By the way, this is called a harmonic series because the numbers in the
series have something to do with the way a musical string like a guitar string
vibrates — don't ask. For history buffs, in the 6th century B.c., Pythagoras
investigated the harmonic series and its connection to the musical notes of
the lyre.

Here's the convergence/divergence rule for p-series;

The p-series Rule: The p-series E EI-F converges if p = 1 and diverges if p < 1.
R=

As you can see from this rule, the harmonic series forms the convergence/
divergence borderline for p-series. Any p-series with terms larger than the
terms of the harmonic series diverges, and any p-series with terms smatller
than the terms of the harmonic series converges.

The p-series for p = 2 is another common one:

The p-series rule tells you that this series converges. It can be shown — S
although it's beyond the scope of this book — that the sum converges to £
But, unlike with the geometric series rule, the p-series rule only tells you
whether or not a series converges, not what number it converges to.

Telescoping series

You don't see many telescoping series, but the telescoping series rule is a
good one to keep in your bag of tricks — you never know when it might come
in handy. Consider the following series:

SUMSB1T A LI D L whilecia L
z‘n(ri1-1}-.5."+6+ Ly Enaioes

m=1

To see that this is a telescoping series, you have to use the partial fractions

technique from Chapter 15 — sorry to have to bring that up again — to rewrite
1

— T a8 —
n(n+1)n n+l

25 -mr)=(-3)+(3-3)+ (5-2) (5 -3) -+ (3-)

ne=l

Now you've got

Do you see how all these terms will now collapse or tefescope? The Vs cancel,
the Ys cancel, the Ys cancel, and so on. All that’s left is the first term, 1, (actu-

ally, it’s only half a term) and the “last” halt-term, - i 1 So the sum is simply
1= ﬁ In the limit, as n approaches infinity, T converges to zero, and

thus the sum converges to 1 -0, or 1,
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Each term in a telescoping series can be written as the difference of two
half-terms — call them f-terms. The telescoping series can then be written as

(h—h)+ (-t (h-h)+{-hs)+. 0+ (Ba— Mava)
[ bet you're dying for another rule, 50 here’s the next one.

Telescoping Series Rule: A telescoping series of the above form converges

it i, ) converges to a finite number. In thal case, the serles converges Lo
h=limh, .. If ha . diverdes, the series diverges.

Note that this rule, like the rule for geometric series, lets you determine what
number a convergent telescoping series converges to. These are the only two
rules [ cover where you can do this, The other rules for determining conver-
gence or divergence do not allow you to determine what a convergent series
converges Lo. But hey, you know what they say, “two out of ten ain't bad.”

Three comparison tests for
convergencel/divergence

Say you're trying to figure oul whether a series converges or diverges, but it
doesn’t fit any of the tests you know. No worries. You find a benchmark series
that you know converges or diverges and then compare your new series to the
known benchmark. For the three following tests, if the benchmark converges,
yvour series converges; and if the benchmark diverges, your series diverges.

The direct compatison test

This is a simple, common-sense rule. If you've got a series that’s smaller than
a convergent benchmark series, then your series must also converge. And if
your series is larger than a divergent benchmark series, then your series
must also diverge. Here's the mumbao jumba,

Direct Comparison Test: Let () = a,= b, for all n.

If ib” converges, then iﬂ,, converges,

n—l n=l

If Xm diverges, then Zb..dwcrﬂes,

1

How aboul an example. Determine whether E _}., converges or diverges.
Piece o' cake. This series resembles E 3 Whl(l‘l is a geometric series with
requal to . (Note that you can rewnte this in the standard geometric series
form as L ( ) .) Because 0 <|r| < 1, this series converges. And because

m=0" .

543" is fess than == a7 for all values of n, Z 3 13r, must also converge.

n=1

325
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Here's another one: Does ILR” converge or diverge? This series resembles

i% the harmonic p—serié!s- {hat is known to diverge. Because I"T” is greater
than % for all values of n = 3, then i% must also diverge. By the way, if
you're wondering why I'm allowed'to consider only the terms where n = 3,
here's why:

For any of the convergence/divergence tests, you can disregard any number of
terms at the beginning of a series. And if you're comparing two series, you can

ignore any number of terms from the beginning of either or both of the series —
and you can ignore a different number of terms in each of the two series.

This utter disregard of innocent beginning terms is allowed because the first,
say, 10 or 1000 or 1,000,000 terms of a series always sum to a finite number
and thus never have any effect on whether the series converges or diverges.
Note, however, that disregarding a number of terms would affect the total that
a convergent series converges to,

The direct comparison test tells you nothing if the series you're investigating is
bigger than a known convergent series or smaller than a known divergent series.

For example, say you want to determine whether E —:?— converges. This
= n=1 n
series resembles L, which is a p-series with p equal to %. The p-series
naly Il

test says that this series diverges, but that doesn't help you because your

series is smalfer than this known divergent benchmark.

Instead, you should compare your series to the divergent harmonic series,

O3 % Your series, E)E— is greater than ,li for all n = 14 (it takes a little work
> n

to show this; give it a try). Because your series is greater than the divergent

harmonic series, your series must also diverge.

The limit comparison test

The idea behind this test is that if you take a known convergent series

and multiply each of its terms by some number, then that new series also
converges. And it doesn’t matter whether that multiplier is, say, 100, or
10,000, or ¥eemo because any number, big or small, times the finite sum of the
original series is still a finite number. The same thing goes [or a divergent
series multiplied by any number. That new series also diverges because any
number, big or small, times Infinity is still infinity. This is over simplified —
it's only in the limit that one series is sort of a multiple of the other — but it
conveys the basic principle.
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You can discover whether such a connection exists between two series by
looking al the ratio of the ath terms of the two series as n approaches infinity.
Here's the test.

Limit Comparison Test: For two series, 2 a,and 2. b,, if a,>0,b,> 0, and

lim (%) = L, where L is finite and positive, then either both series converge

==

or both diverge,

This is a good test to use when you can’t use the direct comparison test for
your series because it goes the wrong way — in other words, your series is
bigger than a known convergent series or smaller than a known divergent series.

Here's an example: Does .tT‘H_llnH converge or diverge? This series
n=2 = 1

resembles the convergent p-series, o so that's your benchmark. But you
can't use the direct comparison test because the terms of your series are
bigger than Lﬁ. Instead, you use the limit comparison test,

n
Take the limit of the ratio of the nth terms of the two series. It doesn't matter
which series you put in the numerator and which in the denominator, but

putting the known, benchmark series in the denominator makes it a little
easier to do these problems and to grasp the results,

anl] S
. m=Inn
lim 1
Eagdas it
= L
Nm 2o p
= lim ‘"“‘2'£1'" (L’I-lbpital's rule)
A D=
= lim 21 (L'Hopital’s rule again)
Nl e
n
Aoas2
2
=
2+0
=

Because the limit is finite and positive and because the benchmark series
converges, your series must also converge.

\

Thus, 2 ',]7

converges.
= n—Inn £
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AF

AW

The limit comparison test is a good one for series where the general term is a
rational function; in other words, where the general term is a quotient of two
polynomials,
— hpt—
For example, determine the convergence or divergence of 3. H—%
=1 L
1. Determine the benchmark series.

Take the highest power of n in the numerator and the denominator —
ignoring any coefficients and all other terms — then simplify. Like this:
Spr-n+l  pi_1

Han+3 " p° 7
That’s the benchmark series, ,—1, the divergent harmonic series.

2. Take the limit of the ratio of the nth terms of the two series,

5n*~n+ 1
n'+4n+3
1

lim
- e

I

3 2
= lim 2= tn
anew i+ 4n+3

3. (dividing numerator and denominator by n“)

3. Because the limit from Step 2 is finite and positive and because the
benchmark series diverges, your serles must also diverge.

o

2
Thus, ) :"?fm diverges.

=1

The limit comparison test is always stated as it appears at the beginning of
this section, but I want to point out — recklessly ignoring the noble tradition
of calculus textbook authors — that it's incomplete in a sense. The limit, L,
doesn’t have to be finite and positive for the test to work. First, if the bench-
mark series is convergent, and you put it in the denominator of the limit, and
the limit is zero, then your series must also converge. Note that if the limit is
infinity, you can’t conclude anything. And second, if the benchmark series is
divergent, and you put it in the denominator, and the limit is infinity, then
your series must also diverge. If the limit is zero, you learn nothing.

The integral comparison test

The third benchmark test involves comparing the series you're investigating
to its companion improper integral (see Chapter 16 for more on improper
integrals). If the integral converges, your series converges; and if the integral
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diverges, so does your series. By the way, to my knowledge, no one else calls
this the integral comparison test — but they should because that’s the way it
works.

' L 1
Here's an example. Determine the convergence or divergence of 3 ninn:

The direct comparison test doesn’t work because this series is smafer than

the divergent harmonic series, % Trying the limit comparison test is the next
natural choice, but it doesn't work either — try it. But if you notice that the
series is an expression you know how to integrate, you're home free (you did
notice that, right?). Just compute the companion improper integral with the
same limits of integration as the index numbers of the summation — like this:

1)
& Faanalia
= lim ! *Inx &

b
I|]|‘J1
= lim }‘ 77 du  (substitution with u=Inx and du= —_}f-dx f
s Eoia2 when x=2, u=1In2, and when x=0b, u=Inb)
sty it &
= lim[Inu]
b — ==

= "m{ln(lnh} ~In(In2))

=In({lne) - In(In2)
=oo—In(In2)

Because the integral diverges, the series diverges.

After you've determined the convergence or divergence of a series with the
integral comparison test, you can then use that series as a benchmark for
investigating other series with the direct comparison or limit comparison tests.

1
nn
you can use this series to investigate E ﬁ with the direct
weas A= /11 ™
comparison test. Do you see why? Or you can investigate, say, 2. %
s itlnn+ /n

For instance, the integral test just told you that E 7 diverges. Now

= n=1

with the limit comparison test. Try it.

The integral comparison test is fairly easy to use, so don't neglect to ask
yoursell whether you can integrate the series expression or something close
to it. If you can, it's a BINGO.

P
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A\

5

B}r the way, in Chapter 186, you look at the following two improper integrals:
f.r dx, which diverges and f—dx which converges. Look back again to
Flgurc 16-13. Now that you know the integral comparison test, you can appre-

ciate the connection between those integrals and their companion p-series:

the divergent harmonic series, %, and the convergent p-series, #

Here’s the mumbo jumbo for the integral comparison test. Note the fine print.

Integral Comparison Test: If f (x} is positive, continuous, and decreasing for
all x= land if aq= f (n), then Eau and ff {x) dx either both converge or both

m=l

diverge.

The two “R” tests: Ratios and roots

Unlike the three benchmark tests from the previous section, the ratio and
root tests don’t compare a new series to a known benchmark. They work by
looking only at the nature of the series you're trying to figure out, They form
a cohesive pair because the results of both tests tell you the same thing. If
your answer is less than 1, the series converges,; if it's more than 1, the series
diverges; and if it's exactly 1, you learn nothing and must try a different test.

The ratio test

The ratio test looks at the ratio of a term of a series to the immediately pre-
ceding term. If, in the limit, this ratio is less than 1, the series converges; if it's
more than 1 (this includes infinity), the series diverges; and if it equals 1, the
test is inconclusive.

The ratio test works especially well with series involving factorials like n! or
where 1 is in the power like 3",

The factorial symbol, |, tells you to multiply like this: 6!=6-5-4:3-2- 1. And

notice how things cancel when you have factorials in the numerator and

_6:5-43.2-1 N 5:-4.83.2.1 _1
denominator of a fraction: 2 ,5, 54331 =6 and i ! 3316

(n 1)'

In both cases, everything cancels but the 6. In the same way,

and C :rﬂ])f = ﬁ; everything cancels but the (n + 1). Last, lt,seems welrd,

but 0! = 1 — just take my word for it.
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Try this one: Does ann—; converge or diverge? Here's what you do. You look at
the limit of the ratio of the (7 + 1)st term to the nth term:

3“!1
(n+1)!
lim 37—
o= m
Axl

= lim T Ty 3

Lo o 4
lim 77

i,
oo+ 1
=0

= n
Because this limit is less than 1, Z % couverges.

Here's another series: Z n . What’s your guess — does it converge or diverge?

Look at the limit of the ratlo
(n + )ﬁl + 1
1
lim (n +n1}.
Erie n
n!
(n+ Lyatt

= e 1')""';;

(74 1)'”'
w(n+1)-n
(n+l}

—In

llm

=e (lim (1 + %)= ¢ is one of the limits to

memorize, as discussed in Chapter 8.)
= 2.718

Because the limit is greater than 1, Z diverges



332 Part V: Integration and Infinite Series
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e\

The root test

Like the ratio test, the root test looks at a limit. This time you investigate

the limit of the nth root of the nth term of your series. The result tells you the
same thing as the results of the ratio test: If the limit is less than 1, the serles
converges; if it's more than 1 (including infinity), the series diverges; and if
the limit equals 1, you learn nothing.

The root test is a good one to try if the series involves nth powers.

Try this one: Does E U Lonverge or diverge? Here's what you do:

n—l
lim”/?

L

evn

= lim ™~ 7 =

N =

52

Slim

o= m

cav

oo
=0
Because the limit is less than 1, the series converges. By the way, you can
also do this series with the ratio test, but it's harder — take my word for it.

Sometimes it's useful to make an educated guess about the convergence or
divergence of a series before you launch into one or more of the convergence/
divergence tests. Here's a tip that helps with some series. The following
expressions are listed from “smallest” to “biggest™ n'", 10", a!,n", (The 10 is an
arbitrary number; the size of the number doesn’t affect this ordering.) A series
with a :,maller expression over a “bigger” one converges, for example, E f.:?.
or 2 e rand a scries wlth a “bigger” expression over a “smaller” one cll'.rers;lszs+
for mstance, E 1007 OF Z 25°

Alternating Series

In the previous sections, you've been looking at series of positive terms. Now
you look at alternating series — series where the terms alternate between
positive and negative — like this:

S ]
16 32764

= =k =
1 + gt

o) —
| —
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Finding absolute versus
conditional convergence

Many divergent series of positive terms converge if you change the signs of
their terms so they alternate between positive and negative. For example,
you know that the harmonic series diverges:

BEe bl 0 ]

stat-+=+a+..,

ptatgtetet

But, if you change every other sign to negative, you obtain the alternating
harmonic series, which converges:

14

sl i L it oo,

AR T AR T

By the way, although I'm not going to show you how to compute it, this series
converges to In2, which equals about 0.6931,

An alternating series is said to be conditionally convergent if it's convergent as
it is but would become divergent if all its terms were made positive.,

An alternating series is said to be absolutely convergent if it would be conver-
gent even if all its terms were made positive. And any such absolutely conver-
gent series is also automatically convergent as it is.

Here's an example. Determine the convergence or divergence of the following
alternating series:

el LIl
2(-D)'gr=l-5+g-g+yg

If all these terms were positive, you'd have the familiar geometric series,

+

o]

o1 1 (bl im0
aw=ltgtrtmtmrt,
Ziyi=ligtgtgtigt
which, by the geomelric series rule, converges to 2. Because the positive
series converges, the alternating series must also converge and you say that
the alternating series is absolutely convergent.

=0

The fact that absolute convergence implies ordinary convergence is just
common sense if you think about it. The previous geometric series of positive
terms converges to 2, If you made all the Llerms negative, it would sum to -2,
right? So, if some of the terms are positive and some negative, the series
must converge Lo something between -2 and 2.

333
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Did you nmioe that the above alternating series is a geometric series as it is
with r= ——" (Recall that the geometric series rule works for alternating series

as well as Ior positive series.) The rule gives Its sum: 1 f = ﬁ = %
B
2

The alternating sevies test

Alternating Series Test: An alternating series converges if two conditions
are met:

1. Its nth term converges to zero.

2. Its terms are non-increasing — in other words, each term is either
smaller than or the same as its predecessor (ignoring the minus signs).

Using this simple test, you can easily show many alternating series to be con-
vergent. The terms just have to converge to zero and get smaller and smaller
(they rarely stay the same). The alternating harmonic series converges by
this test:

eI,
E(l) 1 sty-gts-6t:

As do the following two series:

el 1
2GUEEEISh

E( 11) B L I Al 40
L n
The alternating series test can only tell you that an alternating series itself
converges. The test says nothing about the positive-term series. In other
words, the test cannot tell you whether a series is absolutely convergent or
conditionally convergent. To answer that question, you must investigate the
positive series with a different test.

Now try a few problems, Determine the convergence or divergence of the
following series. If convergent, determine whether the convergence is condi-
tional or absolute.

Z(_l)n»lh}.}_ﬂ
=

1. Check that the nth term converges to zero.
lim ™ n

i
= lim  (by L'Hopital’s rule)

=0
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® Always check the nth term first because if it doesn't converge to zero,
you're done — the alternating series and the positive series will both
diverge. Note that the nth term test of divergence (see the section on the
nth term test) applies to alternaling series as well as positive series,
2. Check that the terms decrease or stay the same (ignoring the minus
signs).

To show that I“T” decreases, take the derivative of the function

f(x)= L%:r Remember differentiation? I know it's been a while,
1

¥ - X—Inx .
f{x)= XT (quotient rule)

==Y
x'd
This is negative for all x = 3 (because the natural log of anything 3 or
higher is more than 1 and x*, of course, is always positive), so the deriv-
ative and thus the slope of the function are negative, and therefore the

function is decreasing. Finally, because the function is decreasing, the
=

Inn

terms of the series are also decreasing. That does it — E( =" '=s

converges by the alternating series test. ARtz

3. Determine the type of convergence.
You can see that for n = 3 the positive series, ]%E, is greater than the
divergent harmonic series, ,1,, so the positive series diverges by the direct
comparison test, Thus, the alternating series is conditionally convergent.

If the alternating series fails to satisfy the second requirement of the alternat-
ing series test, it does not follow that your series diverges, only that this test
fails to show convergence,

You're getting so good at this, how about another problem. Test the conver-
Inn
nJ

gence of )} (~1)" !ﬁf:}-, Because the positive series resembles the conver-

gent p-serzl'i-f;& #. you guess that it converges.

W

If you think you can show that the positive series converges or diverges, you
may want to try that before using the alternating series test, because. ..

1+~ You may have to do this later anyway to determine the type of conver-
gence, and

i . . ’
.+ If you can show that the positive series converges, you're done in one step,
' and you've shown that the alternating series is absolutely convergent.
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5o try to show the convergence of the positive series = I“" The limit compari-
son test seems appropriate here, and -;ll-,- is the natural Jrr;h—:}i-::e for the bench-
mark series, but with that benchmark, the test fails — try it, When this
happens, you can sometimes get home by trying a bigger convergent series.

So try the limit comparison test with the cmwerg,enl;merleq
Inn

hm i

] o

=0 (We just did this above with L'Hopital’s rule.)

Because this limit is zero, the positive series E ]“ — converges (see the “Limit
n=4
comparison test” section); and because the pnmtwe series converges, s0

" ll"lﬂ

does the given alternating series. Thus, E (-1

R |

One last pmhlem and I'll let you go home. Test the convergence of

"'"| R | ! i 1 _2 iy 3 4 5 i

"Z_,I ~1) “] 5+ -5 +g . Thisis an casy one.

The nth term of this series converges to 1 (it's a L'Hépital's rule no-brainer),
so you're done. Because the nth term does not converge to zero, the series
diverges by the nth term test,

Keeping All the Tests Straight

You now probably feel like you know — have a vague recollection of? —
gazillion convergence/divergence tests and are wondering how to keep track
of them all.

Actually, I've given you only ten tests in all — that’s a nice, easy-to-remember
round number.

First are the three series with names: the geometric series, the p-series, and
the telescoping series. A geometric series converges if 0 < |r| < 1. A p-series
converges if p > 1, A telescoping series converges if the second “half term”
converges to a finite number.

Next are the three comparison tests: the direct comparison, the limit compar-
ison, and the integral comparison tests. All three compare a new series to a
known benchmark. If the benchmark converges, so does the series you're
investigating; if the benchmark diverges, so does your new series,
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Follow the bouncing ball

There are countless paradoxes involving infinite
series. Here's one of my favorites. Say you drop
a ball from 1 meter above the ground, and it
bounces up to a height of half a meter, and then
continues to bounce up to exactly half its height
after each bounce. How far will it travel and
when will it stop bouncing? Figuring the total
distance is easy. First, temporarily ignore the 1
meter the ball falls when you drop it. After it
bounces the first time, it goes up half a meter
then'down half a meter for a total of 1 meter, After
its sacond bounce, it goas up a fourth of a meter
then down a fourth of a meter for a total of half a
meter, and so on. This gives you the simple geo-
metric series, 14+ 1/241/441/8 + ..., which sums

'EOI'%rT,I | =2 Nowjustadd on the 1 meter
gy

you ignored for a total distance of 3 meters.

And how long will it take till it stops bouncing?
This questionis a bit trickier because itinvolves

the acceleration due to gravity, approximately
98 meters per second

second
details. If you do the math, you get a total time of
about 2.63 seconds.

. I'll'spare you the gory

Butwait a minute, you say. How canthe ball ever
stop bouncing if it bounces up every time it hits
the ground? Good question. These paradoxes
are bizarre. The ball does bounce up every time
it hits the ground and will thus bounce an infinite
number of times (in principle anyway, real balls
can'tdothis because they cant bounce, say, the
height of a gazillionth of the width of an atom).
But nevertheless, the ball travals only a finite dis-
tance and stops bouncing after a finite amount
of time. Hard to believe buttrue. Ifyou're incred-
ulous, look at it this way. You don't have any
doubt about Achilles passing the tortoise at a
finite distance and in a finite amount of time, do
you? {If you've forgotten about Achilles’s race
with the tortoise, check it out again in Chapter 2.)
Well, the infinite number of times the ball
bounces is analogous to the infinite number of
photos taken of Achilles. Despite the infinite
number of photos, Achilles definitely passes the
tortoise, and despite the infinite number of
bounces, the ball does stop bouncing.

And then you have the two “R" tests: the ratio test and the root test. Both
analyze just the series in question instead of comparing it to a benchmark

series. Both involve taking a limit, and the results of both are interpreted the
same way. If the limit is less than 1, the series converges; if the limit is greater
than 1, the series diverges; and if the limit equals 1, the test is inconclusive.

Finally, you have two tests that form bookends for the other eight — the nth
term test of divergence and the alternating series test. These two form a
coherent pair. You can remember them as the nth term test of divergence and
the ath term test of convergence. The alternating series test involves more
than just testing the nth term, but this is a good memory aid.

Well, there you have it: Calculus, Schmalculus.
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In this part . . .

Eery Dummies book ends with fun top-ten lists. | give
you ten things to remember, ten things to forget, and
ten things you can get away with if your calculus teacher
was born yesterday (my favorite).




Chapter 18
Ten Thmgs to Remember

P09 PERSSBFDOSDEDDD DL i & S 0% 50000 SDPDESSDESSBDESD

In This Chapter

j Critical calculus concepts (just like the icon ['ve been using)
P Life-saving (or at least grade-saving) information

PRSP R R R RR RO PP OO P DD P DS

l his chapter contains ten things you should definitely remember. Just ten —
that's not too much to ask, is it? If your mind is already crammed to capac-
ity, you can make some room by first reading Chapter 19, “Ten Things to
Forget."

Your Sunglasses

<F If you're going to have to study calculus, you might as well look good.

If you wear sunglasses and a pocket protector, it'll ruin the effect.

a’-b’=(a-b)(a+b)

This factor pattern is quasi-ubiquitous and somewhat omnipresent; it's used
in a plethora of problems and forgetting it will cause a myriad of mistakes.
In short, it’s huge. Don't forget it.

—g-: 0, But i Is Undefined

You know that g 4, and so 4 times 2 is 8. ]I S had an answer, thal answer
times zero would have to equal 5. But that’s ImpUSSIb|E making & 0 undeilned.
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Anything’ =1

The only exception is 0, which is undefined. The rule holds for everything
else, including negatives and fractions. This may seem a bit weird, but it's
true.

SohCahToa

No, this isn't a famous Indian chief, just a mnemonic for remembering your
three basic trig functions:
sinf = —ET

cosf =

=>C o>

tan@ =

Flip these upside down for the reciprocal functions:

LA H
L:-.LB'—O
Yoo duk
hE(.Q—A

A
cot9-~0

Trigonometric Ualues for 30,
45, and 60 Degree Angles

sin30"= ¥/ sind5"= ‘% sin60° = %

cos30°= '% cosd5’ = % cos60’= 1]
tan30° = % tan45"= 1 tan60°= /3

There’s no need to memorize these if you know SohCahToa and your
45°-45°-90° and 30°-60°-90° triangles.
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sin‘O+cos’0=1

This identity holds true [ur any angle. Divide both sides of this equation by
sin’6 and you get 1+ cot’8 = csc*6; dividing both sides by cos*0 gives you
tan®@ + 1 = sec* 0.

The Product Rule

[

g (wv) = u'v + uv', Piece o' cake.

The Quotient Rule

—;}% % = %75@—, In contrast to the product rule, many students forget the
quotient rule. But you won't if you just remember to begin the answer with
the derivalive of the top of your fraction, u. This is easy to remember

because it's the most natural way to begin. The rest falls into place.

Where You Put Your Keys

No one can predict what score you'll get on your next calculus exam —
unless, that is, you don't show up.






Chapter 19
Ten Things to Forget
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In This Chapter
» A bunch of common mistakes
»- Some notions you need to dismiss from your brain
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l his is without question the easiest chapter in the book. There's nothing
to study, nothing to comprehend, nothing to learn. Just kick back, crank
up the music, and forget this stull.

(a+b)'=a’+6°— Wrong!

Don’t confuse this with (ab)’ = a® b*, which is right. (a + b)* equals, of course,
a’+2ab+ b,

Ja’+b’=a+b — Wrong!

Don't confuse this with /a®b? = ab, which is right. /a®+ b? can't be simplified.

Slope= 5 e L — Wranq’

This is upsu:lc down Slope equals 5 =5
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%z% — Wrong!

You can't cancel the 3a because it's not a factor of the numerator and the

denominator. Don't confuse this with % = % in which you can cancel the 3a.

:{iﬂ3=37r2 — Wrong!

Pi (77) is a number, not a variable, so #"is also just a number, and the deriva-
tive of any number is zero. Thus, —&‘i, =0,

If k Is a Constant, j kx=Fk'x+ky —

Wrong!

You don’t use the product rule lmre. Constants work like numbers, not vari-
ables, so _g fx works just like 5= = L 3% which equals 3. Thus, % kx=k,

u\_v'u—vu
The Quotient Rule Is T

Wrong!

See the second from the last point in Chapter 18, “Ten Things to Remember.”

X zd,r:%x > — Wrong!

Do you C why this is wrong?
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j - (sinx)dx=cosx+C — Wrong!

The derivative of cosine is negative sine, so the derivative of negative cosine
is sine, and thus }‘ (sinx)dx=-cosx+C.

Green’s Theorem

f_{(de-q- Ndy) = {‘j(% - %)da

This one’s right, but forget trying to remember it.






Chapter 20

Ten Things You Can't
Get Away Wit
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In This Chapter
= What to do if despite reading this totally awesome book,

you still don't understand calculus
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Tlc original title for this chapter was “Ten Things You Can Get Away With
If Your Calculus Teacher Was Born Yesterday," but the publisher's legal
department was afraid someone would actually try some of these stunts, get
caught, and then file a lawsuit. So they changed the title to the boring one
you have now. The lawyers want me to tell you this: “The aforementioned ten
things you can't get away with are described below as if you could actually
get away with them. This is an example of sarcasm (definition — sarcasm:
ironic or cutting humor). These ten stunts are listed for humorous purposes
only, not as a prescription for actual behavior. We at Wiley Publishing do not
endorse said stratagems.” Sorry. They forced me to write this.

Give Two Answers on Exam Questions

If you can’t make up your mind about which of two answers is correct, put
them both down with both of them sort of circled and both sort of crossed
out. If one of your two answers is correct, your teacher will give you the
benelfit of the doubt.

Write Illegibly on Exams

Get an answer on your calculator and then scribble your "work™ so sloppily
that your teacher can’t read it. Because you got the correct answer, he'll
assume that you knew what you were doing and give you full credit.
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Don’t Show Your Work on Exams

Get an answer on your calculator and write the following next to the problem,
“Lasy problem — did work in my head.” Your teacher will take your word for it.

Don’t Do All of the Exam Problems

Who says you have to do all the exam problems? If an exam is, say, four pages
long and stapled together, find the page with the worst looking problems on
it, carefully remove the staple, put the bad page in your pocket, and carefully
replace the staple. Your teacher will assume that the page was omilted at the
copy center. When you later complete the “missing” part of the test and do
every problem perfectly, your teacher will suspect nothing.

Blame Your Study Partner
for Your Low Exam Grade

Tell your teacher that the person you studied with explained everything
wrong, so it’s not your fault. Your teacher will let you retake the exam.

Tell Your Teacher That You Need an “A”
in Ifa(cu!us to Impress Vour Significant
Other

Your teacher, being a romantic at heart — and remembering his days as an
undergracduate when he aced calculus and then became a babe magnet —
will give you the "A”.
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Complain That Early-Morning Exams
Are Unfair Because You're Not a
“Morning Person”

Explain that your inborn biological clock is out of sync with your school’s
old-school, early-to-bed-early-to-rise Protestant ethic. Your teacher will let
you take all your exams in the afternoon and will trust you to not talk with
your friends who take the morning exams.

Protest the Whole Idea of Grades

Make a political stink about teachers who have the nerve to presume that
they have the right to give you a grade. Who are they to be evaluating you?
Claim to be a conscientious objector when it comes to grades. Argue that
giving grades reflects an unfair talent and intelligence bias — that the whole
system is classist and IQist. Your teacher will be impressed with the sincerity
and depth of your philosophical convictions and will let you take all exams
pass/fail.

Pull the Fire Alarm During an Exam

This one’s a bit juvenile — in contrast, of course, to the preceding tips.

Use This Book as an Excuse

If you get caught trying any of the previous stunts, tell your teacher that you
thought it was okay because you read it in a book. Your teacher will let you

off the hook,
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absolute convergence, alternating
series, 333
absolute extrema
closed intervals and, 163-166
entire domain and, 166=167
absolute maximum
derivatives, 155
endpoint extremum, 165
absolute minimums, derivatives, 156
absolute value
algebraic expressions, 36
functions, 58
acceleration
differentiation and, 187-189
position and, 182
seconds squared, 188
Achilles and the Tortoise (convergent series
and), 20
addition. See also integration
fractions, 33-34
powers, 37
quacratic formula, 44
adjacent side (right triangles), defined, 65
algebra
absolute values, 36
expressions, fractions, 35
fractions, 31-36
limits at infinity, 109-110
limits, solving with, 99-102
powers, 36-37
roots, 37-39
alternating series
absolute convergence, 333-334
alternating harmonic series, 333
conditional convergence, 333-334
introduction, 332
tests, 334-336
angles
measuring with radians, 69-70
trigonometric values for, 342
values, finding for
right triangles, 66-67
unit circles, 68-70

ANSWErs on exams

multiple, 349

showing your work, 350

skipping, 350
antiderivatives

definition, 236

formulas, 252

Fundamental Theorem of Calculus, 241

guess and check method, 253-255

reverse rules, 251-253

substitution method, 255-258

X-intercept and, 241
antidifferentiation, introduction, 235-236
approximating area

introduction, 216-217

left rectangle rule, 218-219

left sums and, 217-218

Midpoint Rule, 223-224

midpoint sums, 222-224

right rectangle rule and, 220-221

right sums and, 220-222

Simpson's rule, 233-234

Trapezoid rule, 231-233
arcs, length, 300-301
area

curves

area between, 290-292
area under, 214-216

definite integrals and, 228-230

integration, calculating with, 17-18

negative, 215

rate and, 240

substitution problems, 258-259
area functions

Fundamental Theorem and, 246-249

introduction, 237-240
arguments

antiderivative guess and check

method, 255

composite functions and, 142
association, functions, 49
asymptotes

defined, 74

horizontal, limits at infinity and, 107

infinite limits and, 84-85

vertical, improper integrals and, 309-310
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average rate, compared to
instantaneous, 130
average value, functions, 288

o5 o

bouncing ball infinite series, 337

business and economics differentiation
problems, marginals in economics,
204-208

o e

calculators
calculating limits, 97-99
limits at infinity, 108
caleulus
defined, 10-12
difficulty of, 10
math, compared to, 12-14
usefulness of, 19
canceling in fractions
expressions and, 35
multiplication rule, 35-36
overview, 34
cause and effect, functions, 49
chain rule, differentiation, 141-146
circles
circumference formula, 70
unit circles, 68-69
circumference, formula, 70
closed intervals, absolute extrema and,
163-166
coefficients
differentiation and, 135-136
trigonometric substitution and, 283-284
comparison tests, convergence/divergence,
325-330

completing the square, quadratic equations,

44-45
composite functions
differentiation, 142
overview, 50-52
concavity
derivatives, 154-155, 156
down interval, graphs, 173
locating, 168-170
Second Derivative Test, 160-161
conditional convergence, alternating
series, 333

conjugate multiplication, limits, calculating,
100-101
conjugates, expressions, 100
constant functions, defined, 57
constant multiple rule, differentiation,
135-136
constant rule, differentiation, 134
constants, Things to Forget, 346
continuity
delined, 93
formal definition, 91-92
hole exception, 90-91
mnemonic, 92-93
overview, 89-90
continuous functions
limits, calculating, 96
overview, 89-9()
convergences
absolute, alternating series, 333-334
comparison tests, 325-330
conditional, alternating series, 333-334
geometric series test, 322-323
nth Term Test, 321-322
p-series test, 323-324
sequences, 317
series, 319-321
telescoping series test, 324-325
convergent series, overview, 20-22
coordinate system, x-y coordinate
system, 52
cosecant
delined, 66
inverse [unctions, 76
quotient rule, differentiation, 141
trigonometric integrals and, 273-274
cosine
defined, 66
graphing, 74-75
limits and, 104
trigonometric integrals and, 269-271
unit circle angle measurement and, 71
cotangent
defined, 66
quotient rule, differentiation, 141
trigonometric integrals and, 273-274
critical numbers, local extrema, 157-158
critical points, derivatives, 156
cubes, sum and difference of, 41
curves
area between, 290-292
area under, 214-216



asymptotes, 74
derivatives, 122-124
functions, 53
normal lines and, 198
representative rectangles, area between
curves and, 290-292
slope, calculating, 16-17
vertical line test, 52-53
cusps, derivatives, 155

o) e

deceleration, differentiation and, 187-189
decreasing derivatives, 1565, 156
graphs, 172
definite integrals
area, exact, 228-230
estimates, 230
Fundamental Theorem shortcut, 244
Riemann sums and, 230
rules for, 246
definitions, introduction, 237
degrees, radians, converting to, 70
demand functions, marginals and, 205
denominators
defined, 32
irreducible quadratic factors in, 281-283
limits, conjugate multiplication, 100
linear factors, partial functions and,
280-281
repeated linear factors in, 283
repeated quadratic factors in, 283
rools, 39
dependent variables, lunctions, 49-50
derivatives
absence ol, conditions for, 131
absolute maximum, 155
absolute minimums, 156
concavity, 154-155, 156
critical points, 156
curves, 122-124
cusps, 155 ;
decreasing, 155, 156
defined, 17, 114
extreme, 156
first, 151
First Derivative Test, 158-160
graphs, 170-173
higher order, 150-151
increasing, 155, 156

inflection point, 154-155
limits, functions with holes, 91
local maximums, 154
local minimums, 155
Mean Value Theorem, 175, 289
mnemonic, 92-93
positive, 160-161
rate, 214, 239
relative maximums, 154
relative minimums, 155
second, 151
positive, 160-161
Second Derivative Test, 160-163
slope, 118
third, 151
Descartes, René, x-y coordinate system, 52
difference of cubes, [actoring, 41
difference of squares, factoring, 41
difference quolient
differentiation rules and, 135
formula for, 127
overview, 124-125
secant lines, 125
difference rule, differentiation, 137
differentiation. See afso antidifferentiation
acceleration, 187-189
business and economics problems, 204-208
coeflicients and, 135-136
compaosite functions, 142
deceleration, 187-189
defined, 15, 113-114
difference quotient, 124-130
example problem, 119-120
exponential functions, 138-139
Fundamental Theorem and, 249-251
implicit, 146-148
inverse functions, 149-150
linear approximations, 201-203
logarithmic, 148
logarithmic functions and, 139
maximum height, 184-185
maximums and, 177
minimum height, 184-185
minimums and, 177
normal line problem, 198-200
optimization problems, 177-181
position, 181-184
radical functions, 135
rate and, 211

Index 3 5 5
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differentiation (continued)
related rates, 189-196 b E b
slope and, 211
speed and distance traveled, 186-187
speed versus velocity, 184
tangent line problem, 196-198
trigonometric functions, 137-138
usefulness of, 114
velocity versus speed, 184
differentiation rules
chain rule, 141-146
constant multiple rule, 135-136
constant rule, 134
difference quotient, 135
difference rule, 137
introduction, 133
power rule, 134-135
product rule, 139-140
quotient rule, 140-141
sum rule, 136-137
Direct Comparison Rule, convergence/
divergence Lest, 325
direct comparison test, convergence/
divergence, 325-326
discontinuity, types of, 93
displacement, velocity and, 185-186

end behavior, absolute extrema and, 167
endpoint extremnum, absolute maximum and,
165

equations. See afso formulas

function notation, 50

second degree polynomial, 42

slope of tangent line, 127
estimates, definite integrals and, 230
exponential functions

differentiating, 138-139

averview, 59
exponents, See also powers

superscripts, compared, 61

Things to Remember, 342
expressions

conjugates, 100

fractions, 35

integration symbol and, 213
extrema

absolute

closed intervals and, 163-166
entire domain and, 166=167
derivatives, 156
endpoint extremum, 165

distance traveled, speed and, 186-187 : =
e local, 157-163
distributing powers, 37 meximum value calculation‘and. 179
e Jen e g um value calculation and,
comparison tests, 325-330
geomelric series test, 322-323 ® F ®

nth Term Test, 321-322

p-series test, 323-324 factorials, ratio test, series, 330
sequences, 317 factoring
series, 319-321 difference of squares, 41
telescoping series test, 324-325 GCF, 40
divergent series, defined, 20 limit calculations, 99-100
division overview, 40
denominators, 32 quadratic equations, 42-43
fractions, 32-33 sum and difference of cubes, 41
reciprocals, 32 trinomial, 4142
dL, integration and, 213 First Derivative test, 158-160
domain first derivatives, introduction, 151
continuous functions, &9 forms, L'Hopital’s Rule, 306-308
functions, 19 formulas, See afso equations
drawing antiderivatives, 252
30°-60°-90° triangles, 67 circumference, 70
right triangles in unit circles, 72 degrees to radians and back, 70

difference quotient, 127



limits, 95-96

mathematics of limits and, 26

slope, 116

speed, 86

fractions

addition, 33-34

canceling in, 34-36

denominators, 32

division, 32-33

limits, calculating, 101

multiplication, 32

numerators, adding, 34

overview, 32

power rule and, 135

gquadratic formula, 44

reciprocals, 32

roots, 39

subtraction, 34

undefined, limits and, 91

variables, addition and, 33

functions

absolute value, 58

area function, 237-240

association, 49

average speed graph, 88

average value, 288

cause and effect, 49

characteristics, 4849

composite, 50-52
differentiation, 142

constant function, 57

constant multiple rule, differentiation, 136

continuous, 89-90

critical points, derivatives, 156

curves, 53

demand, marginals and, 205

dependent variables, 49-50

domain, 49

exponential, 59
differentiating, 138-13%

graphs, 53

horizontal transformations, 62-63

identity function, 57

independent variables, 49=50

infinite limits, 85-86

input variables, 49

Inverse, 60-061, 75-76
differentiation and, 149-150

index 357

limits, 80-82
lines, 54-55

graphing, 56-57

point-slope, 57-58

slope, 55-56

slope-intercept, 57-58
logarithmic, 59-60
Mean Value Theorem and, 174
notation, 50
odd symimetry, 58
osclllating, 93

limits and, 104
outpul variables, 49
overview, 48
parabolic, 58
partial functions, 279-284
periodic, 74
piecewise, 83
polynomial, 58
product rule, differentiation, 140
quotient rule, differentiation, 140-141
radical, differentiation and, 135
range, 49
rational, 90
sequences and, 317-318
squaring, 48
stationary points, 154
trigonometric, differentiating, 137-138
vertical line test, 52-53
vertical transformations, 64

Fundamental Theorem of Calculus

area functions and, 246-249
differentiation, 249-251
integration, 249-251
overview, 240-241
shortcut, 244-251

o (5 e

Gabriel's horn, improper integrals and,

313-314

GCF (greatest common factor),

determining, 40

geometric series

convergence/divergence test, 322-323
tests, 336

Geometric Series Rule,

convergence/divergence, 323
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graphing calculators, lines, 57

graphs -
absolute value functions, 58
average speed [unction, 88
curves, derivatives, 122-124
derivatives, 170=173
exponential functions, 59
functions, 53

horizontal translormations, 62-63

inverse functions, 60-61
logarithmic functions, 59-60
parabolic functicns, 58

sine, cosine, and tangent, 74-75

slope, 117-118
vertical transformations, 64
Green's Theorem, 347

guess and check method, antiderivatives,

253-255

o e

higher order derivatives, 150-151

hilltop analogy

crest hump shape, Second Derivalive

Test and, 160

First Derivative Test and, 158-160

hole exception, limits, 90-91

horizontal asymplotes, limits at infinity, 107

horizontal lines, slope of, 116

horizontal transformations (functions),

graphing, 62-63
hypotenuse, defined, 65

o] e

identity function, defined, 57
illegible writing on exams, 349

implicit differentiation, 146-148

improper integrals
Gabriel's horn and, 313-314

infinite limits of integration, 311-312

introduction, 308-309

vertical asymptotes, 309-310
increasing derivatives, 155, 156

graphs, 172

indefinite integrals, definition, 236
independent variables, functions, 49-50

index of summation, 227

infinite discontinuity
delined, 93
limits and, 93
infinite limits of integration, improper
integrals and, 311-312
infinite limits, overview, 84-86
infinite sequences, 316
infinite series
bouncing ball, 337
convergenl series, 20-22
definition, 318
divergent series, 20
introduction, 315
introduction to, 19-20
infinity
evaluating limits at, 106
relationship to calculus, 12
inflection points
derivative graphs, 173
derivatives, 154-155
locating, 168-170
input variables, functions, 49
instantaneous rate, compared to
average rate, 130
instantaneous speed calculations, 87-88
integral comparison test,
convergence/divergence, 328-330
integrals
definite, exact area and, 228-230
improper, 308-314
indefinite, 236
mean value theorem, 287-289
trigonometric, 268-274
integration
area under a curve, 214-216
dL, 213
expressions and, 213
Fundamental Theorem and, 249-251
introduction, 211
limits of, 236
negative area, 215
overview, 18-19
by parts, 261-267
points a and b, 213
rational functions, partial functions and
279-280
symbol for, 212-213
volume and, 212
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intervals, closed, absolute extrema and,
163-166
inverse functions
differentiation, 149-150
overview, 60-61
trigopnometry, 75-76

® ] ®
jump discontinuity

defined, 93
limits and, 93

o/ o

least common denominator, adding fractions,
33
left rectangle rule, approximating
area and, 218-219
Left Rectangle Rule, subscripts, 219
left sums, approximating area and, 217-218
length, arc, analysis, 300-301
L'Hopital's Rule
limit problems, 305-308
sequence limits, 318
LIATE, u and in integration, 264-267
Liebniz, Gottfried, 52
limit comparison test,
convergence/divergence test, 326-328
limits
absence of, conditions, 93
algebra, solving with, 99-102
calculating, 82
absence of, 96
calculators, 97-99
continuous, 96
fractions, 101
at infinity with algebra, 109-110
at infinity with caleulator, 108
sandwich method, 102-103
tables, usefulness of, 98
conjugate multiplication, 100-101
defined, 79, 84
difference quotient, secant lines, 126
evaluating at infinity, 106
factoring, 99=100

formulas to memorize, 95-96
functions, 80-82
hole exception, 90-91
horizontal asymptotes and, 107
infinite, 84-586
instantaneous speed, 88
mathematics of, overview, 23-24
mnemonic, 92-93
one-sided, 83-84
oscillating functions, 104
puzzles/teasers, 103
sequences, 318
speed, calculation for, 86-88
limits of integration
definition, 236
infinite, improper integrals and, 311-312
L'Hopital’s Rule, 305-308
linear approximations, differentiation and,
201-203
lines
functions, slope, 55-56
graphing, 56-57
graphing calculators, 57
secant, difference quotient, 125
slope and, 116-118
derivatives, 118
local extrema
critical numbers, 157-158
derivative graphs, 173
local maximums, derivatives, 154
local minimums, derivatives, 155
logarithmic differentiation, 148
logarithmic functions, 59-60
differentiating, 139
logarithms, 39-40

o/l o

marginals in economics, differentiation and,
204-208
mathematics of limits, overview, 23-24
maximums
acceleration, 188
differentiation and, 177
height, differentiation and, 184-185
maximum value calculation, 178-179
velocity, 186
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Mean Value Theorem
derlvatives and, 175
functions and, 174
introduction, 174
Mean Value Theorem for Derivatives, 289
Mean Value Theorem for Integrals, 287-289
meat-slicer method, solids volume, 293-294
Midpoint Rule, approximating
area and, 223-224
midpoint sums, approximating
area and, 222-224
minimums
acceleration, 188
dilferentiation and, 177
height, differentiation and, 184-185
velocity, 186
mnemonics
limits, continuity, and derivatives, 92-93
SohCahToa, trigonometric functions, 342
trig derivatives, 137
multiplication
conjugate, calculating limits, 100-101
fractions, 32
canceling in, 35-36
powers, 37
roots, 38
multiplicalive inverse, defined, 32

o\ e

negative area, integration and, 215
negative numbers, roots and, 38
negative powers, power rule and, 135
negative slopes, 56, 154

negative velocity, definition, 184

nested-Russian-dolls method, solids volume,

298-300
Newlon, Isaac, 52
normal line problem, differentiation and,
198-200
notation, See afso summation notation
differences in, 116
functions, 50
nith Term Test
convergences, 321-322
divergences, 321-322
numerators
adding fractions, 34
limits, conjugate multiplication, 100

o () e

odd symmetry [unctions, defined, 58
one-sided limits, 83-84
opposite reciprocals, perpendicular
lines and, 199
opposite side (right triangles), defined, 65
optimization
introduction, 177
maximum area calculation, 179-181
maximum value calculation, 178-179
oscillating functions, limits and, 014, 93
output, functions, 48
output variables, functions, 49

opPe

p-series
convergence/divergence test, 323-324
tests, 336
p-series Rule, convergence/diverdgence,
323-324
parabolas, derivatives, 122-124
parabolic functions, defined, 58
paradoxes, Achilles and the Tortolse, 20-22
parallel lines, slope, 56
parentheses, composite functions, 142
partial functions
integration and, 279-280
introduction, 279-284
irreducible quadratic factors in
denominators, 281-283
linear factors in denominators, 280-281
repeated linear factors and, 283
repeated quadratic factors and, 283
parts, Integration by
circular iterations, 267
introduction, 261-263
multiple iterations, 266
u and, 264-265
periodic functions, trigonometry, 74
perpendicular lines
slope, 56
slopes, 199
piecewise functions, limits, 83
polynomial functions, 58
continuity, 89
higher order derivatives and, 150
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polynomials, trinomial factoring, 42
position

acceleration and, 182

differentiation and, 181-184

as function of time, 182

velocity and, 182
positive powers, power rule and, 135
positive second derivatives, 160-161
positive slopes

defined, 56, 154

derivative graphs and, 171
positive velocity, definition, 184
power functions, differentiation and, 135
power rule, differentiation, 134-135
powers. See afso exponents

overview, 36-37

roots and, 38
problems, solving, types of approaches, 98
Product Rule, 343
product rule, differentiation, 139=140
profit

marginal, 206-207

maximum, 207-208
Pythagorean identity, trigonometric integrals

and, 269-270

Pythagorean theorem, defined, 67

oQ-

quadratic equations
completing the square, 44-45
factoring, 42-43
quadratic formula, 43—-44
quadratic formula, 43-44
Quotient Rule
defined, 343
Things to Forget, 346
quotient rule, differentiation, 140-141

o R e

radians ;
degrees, converting to, 70
measuring angles, 69-70
radical functions, differentiation, 135
range, functions, 49
ranges, inverse functions, 75

rates
average compared to instantaneous, 130
defined, 120
derivatives and, 239
distance example, 119-120
graphing, 121-122
related, 189-196
slope and, 119
speed example, 120-121
ratio, slopes, 55
ratio test, serles, 330-331
rational functions
continuity, 90
convergence/divergence tests, 328
higher order derivatives and, 150
integration and, 279-280
reciprocals, defined, 32
rectangles
area between curves, 290-292
left, approximating area and, 217-218
midpoint sums, approximating
area and, 222-224
right, approximating area and, 220-222
related rates
blowing up a balloon problem, 190-191
distance between cars problem, 194-196
filling up a trough problem, 191-194
introduction, 189
relations, x-y coordinate system, 54
relative maximums, derivatives, 154
relative minimums, derivatives, 155
removable discontinuity, defined, 93
representative rectangles, arca between
curves, 290-292

“reverse rules, antiderivatives, 251-253

revolution, surfaces, calculating, 302-305
Riemann sums
definite integrals and, 230
limits, 230
sigma notation (Z) and, 225
Right Rectangle Rule, approximating
area and, 220-221
right rectangles
approximating area and, 220-221
sigma notation (L) and, 225
right sums, approximating area, 220-222
right triangles
30°-60°-90°, 66-67
45"-45"-90°, 66-67
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right triangles (continued)
explained, 66-67
Pythagorean theorem, 67
trigonometry and, 65-66
unit circles, drawing in, 72

rise, slopes, b5-56, 117

root test, series, 332

roots
fractions, 39
powers, converting into, 38
simplifying, 38-39

run, slopes, 55-56, 117

oS e

£ (sigma notation)
introduction, 224
Riemann sums and, 225
secant line
difference quotient, 125
limits, 126
secants
defined, 66
inverse functions, 76
Mean Value Theorem and, 174
quotient rule, differentiation, 141
lrigonometric integrals, 271-273
trigonometric substitution and, 279
second degree polynomial equations, 42
Second Derivative Test
concavity, 160-161, 168-170
inflection points, 168-170
second derivatives
introduction, 151
positive, 160-161
seconds squared, 185
sequences. See also series
convergences, 317
definition, 316
divergences, 317
functions and, 317-318
infinite sequences, 316
limits, 318
series, compared to, 20
series. See afso sequences
alternating, 332-336
convergences, 319-321
divergences, 319-321
geomelric, converdence/divergence test,
322-323

infinite, 19-22 318
p-series, convergence/divergence test,
323-324

ratio test, 330-331

root test, 332

summing, 318-321

telescoping, convergence/divergence test,

324-325

showing your work on exams, 350
sigma notation (%)

introduction, 224

Riemann sums and, 225
sign graphs, First Derivative Test and, 159
simplifying, roots, 38-39
Simpson's Rule, approximating area, 233-234
sine

defined, 66

graphing, 74-75

inverse [unctions, 75

limits and, 104

trigonometric integrals and, 269-271

trigonometric substitution and, 278-279

unit circle angle measurement and, 71
slope

absolute maximums, 155

absolute minimums, 156

calculating, 15-17

concavity, derivatives and, 155

cusps, 155

defined, 114

derivative, 118

difference quotient, 124-130

formula, 116

functions, 55-56

graphing, 117-118

inflection point, derivatives and, 155

lines, 116=118

local minimums, 155

mathematics of limits, 23-24

negative, 154

parallel lines, 56

perpendicular lines, 56, 199

positive, 154

derivative graphs and, 171

rates, graphing, 121-122

relative minimums, 155

rise, 117

run, 117

undefined, cusps, 155
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SohCah'Toa, trig functions, 342
solids, volume
meal slicer method, 293-294
nested Russian dolls method, 298-300
stack-of-donuts-that-have-been-sat-on
method, 296-298
stack of pancakes method, 295-296
speed
calculation for, 86-88
distance traveled and, 186-1587
velocity, compared to, 184
squaring function, defined, 48
stack-of-donuts-that-have-been-sat-on
method, solids volume, 296-298
stack-ol-pancakes method, solids volume,
295-206
stationary points, functions, 154
steepness, explained, 114
subscripts
left rectangles and, 219
right rectangles and, 220-221
substitution method
antiderivatives, 255-258
area, 258-259
limits
calculating, 99-110
at infinity, 107
trigonometric integrals and, 274-279
subtraction
[ractions, 34
powers, 37
quadraltic formula, 44
sum of cubes, factoring, 41
sum rule, differentiation, 136-137
summation notation
index of summation, 227
overview, 224-225
¥ (sigma notation), 224
summing series
introduction, 318
partial sums, 219
sunglasses, things to remember, 341
superscripts
exponents, compared, 61
inverse functions, 75
one-sided limits, 83
surfaces of revolution, calculating, 302-305
symbols, integration, 212-213

o e

tables, limit calculations, usefulness of, 98
tangent
defined, 66
graphing, 74-75
quotient rule, differentiation, 141
trigonometric integrals, 271-273
trigonometric substitution and, 275-277
tangent lines
differentiation and, 196-198
linear approximation and, 203
slope, calculating, 127
telescoping series
convergence/divergence test, 324-325
tests, 336
tests
alternating series, 334-336
comparison, convergence/divergence,
325-330
geometric series, 336
nth Term Test, 321-322
p-series, 336
ratio test, 330-331
rool test, 332
telescoping series, 336
Texas Instruments TI-83 calculator, limits,
calculating, 97-98
theorems
Fundamental Theorem of Calculus
area functions and, 246-249
differentiation, 249-251
integration, 249-251
overview, 240-241
shortcut, 244-251
Green's Theorem, 347
Mean Value Theorem, 174
derivatives and, 175
functions and, 174
introduction, 174
Mean Value Theorem for Derivatives, 289
Mean Value Theorem for Integrals, 287-289
Pythagorean, 67
Things to Forget, 345-347
Things to Remember, 341-343
Things You Can’t Get Away With, 349-351
third derivatives, introduction, 151
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Trapezoid rule, approximating
area and, 231-233
lrapezoids, Simpson's Rule, approximating
area, 233-234
trigonometric functions
differentiating, 137-138
SohCahToa mnemonic, 342
trigonometric integrals
cosecants and, 273-274
cotangents and, 273-274
introduction, 268-269
Pythagorean identity, 269-270
secants ancd, 271-273
sines and, 269-271
substitution method, 274-279
tangents and, 271-273
trigonometry
inverse functions, 75-76
periodic functions, 74
right triangles, 65-66
unit circles, 71-73
values for angles, 342
trinemial factoring, overview, 41-42

o lf o

unit circles
angles in, 69
measuring with radians, 69-70
overview, 68-69
right triangles, drawing in, 72
trigonometric calculations with, 71-73

o/ e

variables
absolute values, 36
adding fractions, 33
dependent, 49-50
independent, 49-50
input, 49
output, 49
velocity
average, displacement and, 186
maximum/minimum, 186

negative, 184
position and, 182
positive, 184
speed, compared to, 184
total displacement, 185
vertical asymptotes, improper integrals and,
309-310
vertical line test, curves, 52-53
vertical lines, slope of, 116
vertical transformations (functions),
graphing, 62-63
vocabulary, introduction, 237
volume
integration and, 212
solids
ineat-slicer methaoc, 293-204
nested-Russian-dolls method, 298-300
stack-of-donuts-that-have-been-sat-on
method, 296-298
stack-of-pancakes method, 295-296

o X o

X-axis
area under a curve, 215
negative area and, 215
x-intercept, antiderivatives and, 241
x-y coordinate system
rate, graphing, 121-122
relations, 54
René Descartes, 52
unit circle angle measurements and, 71

-yo

Y-axis, area under a curve, 215
yo-yo movement, differentiation, 182-183

o e

Zeno ol Elea, Achilles and the Tortoise, 20
zooming in, mathematics of
limits and, 24-26
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