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Introduction

Linear algebra is usually the fledgling mathematician’s first introduction 

to the real world of mathematics. “What?” you say. You’re wondering 

what in tarnation you’ve been doing up to this point if it wasn’t real math-

ematics. After all, you started with counting real numbers as a toddler and 

have worked your way through some really good stuff — probably even some 

calculus.

I’m not trying to diminish your accomplishments up to this point, but you’ve 

now ventured into that world of mathematics that sheds a new light on math-

ematical structure. All the tried-and-true rules and principles of arithmetic 

and algebra and trigonometry and geometry still apply, but linear algebra 

looks at those rules, dissects them, and helps you see them in depth.

You’ll find, in linear algebra, that you can define your own set or grouping of 

objects — decide who gets to play the game by a particular, select criteria — 

and then determine who gets to stay in the group based on your standards. 

The operations involved in linear algebra are rather precise and somewhat 

limited. You don’t have all the usual operations (such as addition, subtrac-

tion, multiplication, and division) to perform on the objects in your set, but 

that doesn’t really impact the possibilities. You’ll find new ways of looking at 

operations and use them in your investigations of linear algebra and the jour-

neys into the different facets of the subject.

Linear algebra includes systems of equations, linear transformations, vectors 

and matrices, and determinants. You’ve probably seen most of these struc-

tures in different settings, but linear algebra ties them all together in such 

special ways.

About This Book
Linear algebra includes several different topics that can be investigated 

without really needing to spend time on the others. You really don’t have to 

read this book from front to back (or even back to front!). You may be really, 

really interested in determinants and get a kick out of going through the 

chapters discussing them first. If you need a little help as you’re reading the 

explanation on determinants, then I do refer you to the other places in the 
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book where you find the information you may need. In fact, throughout this 

book, I send you scurrying to find more information on topics in other places. 

The layout of the book is logical and follows a plan, but my plan doesn’t have 

to be your plan. Set your own route.

Conventions Used in This Book
You’ll find the material in this book to be a helpful reference in your study 

of linear algebra. As I go through explanations, I use italics to introduce new 

terms. I define the words right then and there, but, if that isn’t enough, you 

can refer to the glossary for more on that word and words close to it in mean-

ing. Also, you’ll find boldfaced text as I introduce a listing of characteristics 

or steps needed to perform a function.

What You’re Not to Read
You don’t have to read every word of this book to get the information you 

need. If you’re in a hurry or you just want to get in and out, here are some 

pieces you can safely skip:

 ✓ Sidebars: Text in gray boxes are called sidebars. These contain interest-

ing information, but they’re not essential to understanding the topic at 

hand.

 ✓ Text marked with the Technical Stuff icon: For more on this icon, see 

“Icons Used in This Book,” later in this Introduction.

 ✓ The copyright page: Unless you’re the kind of person who reads the 

ingredients of every food you put in your mouth, you probably won’t 

miss skipping this!

Foolish Assumptions
As I planned and wrote this book, I had to make a few assumptions about 

you and your familiarity with mathematics. I assume that you have a work-

ing knowledge of algebra and you’ve at least been exposed to geometry and 

trigonometry. No, you don’t have to do any geometric proofs or measure 

any angles, but algebraic operations and grouping symbols are used in linear 

algebra, and I refer to geometric transformations such as rotations and reflec-

tions when working with the matrices. I do explain what’s going on, but it 

helps if you have that background.
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How This Book Is Organized
This book is divided into several different parts, and each part contains 

several chapters. Each chapter is also subdivided into sections, each with a 

unifying topic. It’s all very organized and logical, so you should be able to go 

from section to section, chapter to chapter, and part to part with a firm sense 

of what you’ll find when you get there.

The subject of linear algebra involves equations, matrices, and vectors, but 

you can’t really separate them too much. Even though a particular section 

focuses on one or the other of the concepts, you find the other topics work-

ing their way in and getting included in the discussion.

Part I: Lining Up the Basics 
of Linear Algebra
In this part, you find several different approaches to organizing numbers 

and equations. The chapters on vectors and matrices show you rows and 

columns of numbers, all neatly arranged in an orderly fashion. You perform 

operations on the arranged numbers, sometimes with rather surprising 

results. The matrix structure allows for the many computations in linear alge-

bra to be done more efficiently. Another basic topic is systems of equations. 

You find out how they’re classified, and you see how to solve the equations 

algebraically or with matrices.

Part II: Relating Vectors and 
Linear Transformations
Part II is where you begin to see another dimension in the world of math-

ematics. You take nice, reasonable vectors and matrices and link them 

together with linear combinations. And, as if that weren’t enough, you look at 

solutions of the vector equations and test for homogeneous systems. Don’t 

get intimidated by all these big, impressive words and phrases I’m tossing 

around. I’m just giving you a hint as to what more you can do — some really 

interesting stuff, in fact.

Part III: Evaluating Determinants
A determinant is a function. You apply this function to a square matrix, and 

out pops the answer: a single number. The chapters in this part cover how 

to perform the determinant function on different sizes of matrices, how to 
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change the matrices for more convenient computations, and what some of 

the applications of determinants are.

Part IV: Involving Vector Spaces
The chapters in this part get into the nitty-gritty details of vector spaces and 

their subspaces. You see how linear independence fits in with vector spaces. 

And, to top it all off, I tell you about eigenvalues and eigenvectors and how 

they interact with specific matrices.

Part V: The Part of Tens
The last three chapters are lists of ten items — with a few intriguing details 

for each item in the list. First, I list for you some of the many applications of 

matrices — some things that matrices are actually used for in the real world. 

The second chapter in this part deals with using your graphing calculator to 

work with matrices. Finally, I show you ten of the more commonly used Greek 

letters and what they stand for in mathematics and other sciences.

Icons Used in This Book
You undoubtedly see lots of interesting icons on the start-up screen of your 

computer. The icons are really helpful for quick entries and manipulations 

when performing the different tasks you need to do. What is very helpful with 

these icons is that they usually include some symbol that suggests what the 

particular program does. The same goes for the icons used in this book.

 This icon alerts you to important information or rules needed to solve a prob-

lem or continue on with the explanation of the topic. The icon serves as a 

place marker so you can refer back to the item as you’re reading through the 

material that follows. The information following the Remember icon is pretty 

much necessary for the mathematics involved in that section of the book.

 The material following this icon is wonderful mathematics; it’s closely related 

to the topic at hand, but it’s not absolutely necessary for your understanding 

of the material. You can take it or leave it — whichever you prefer.
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 When you see this icon, you’ll find something helpful or timesaving. It won’t 

be earthshaking, but it’ll keep you grounded.

 The picture in this icon says it all. You should really pay attention when you 

see the Warning icon. I use it to alert you to a particularly serious pitfall or 

misconception. I don’t use it too much, so you won’t think I’m crying wolf 

when you do see it in a section.

Where to Go from Here
You really can’t pick a bad place to dive into this book. If you’re more inter-

ested in first testing the waters, you can start with vectors and matrices 

in Chapters 2 and 3, and see how they interact with one another. Another 

nice place to make a splash is in Chapter 4, where you discover different 

approaches to solving systems of equations. Then, again, diving right into 

transformations gives you more of a feel for how the current moves through 

linear algebra. In Chapter 8, you find linear transformations, but other types 

of transformations also make their way into the chapters in Part II. You may 

prefer to start out being a bit grounded with mathematical computations, so 

you can look at Chapter 9 on permutations, or look in Chapters 10 and 11, 

which explain how the determinants are evaluated. But if you’re really into 

the high-diving aspects of linear algebra, then you need to go right to vector 

spaces in Part IV and look into eigenvalues and eigenvectors in Chapter 16. 

No matter what, you can change your venue at any time. Start or finish by 

diving or wading — there’s no right or wrong way to approach this swimmin’ 

subject.
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Part I
Lining Up the 

Basics of 
Linear Algebra



In this part . . .

Welcome to L.A.! No, you’re not in the sunny, rockin’ 

state of California (okay, you may be), but regard-

less of where you live, you’ve entered the rollin’ arena of 

linear algebra. Instead of the lights of Hollywood, I bring 

you the delights of systems of equations. Instead of being 

mired in the La Brea Tar Pits, you get to admire matrices 

and vectors. Put on your shades, you’re in for quite an 

adventure.



Chapter 1

Putting a Name to Linear Algebra
In This Chapter
▶ Aligning the algebra part of linear algebra with systems of equations

▶ Making waves with matrices and determinants

▶ Vindicating yourself with vectors

▶ Keeping an eye on eigenvalues and eigenvectors

The words linear and algebra don’t always appear together. The word 

linear is an adjective used in many settings: linear equations, linear regres-
sion, linear programming, linear technology, and so on. The word algebra, of 

course, is familiar to all high school and most junior high students. When 

used together, the two words describe an area of mathematics in which some 

traditional algebraic symbols, operations, and manipulations are combined 

with vectors and matrices to create systems or structures that are used to 

branch out into further mathematical study or to use in practical applications 

in various fields of science and business.

The main elements of linear algebra are systems of linear equations, vec-

tors and matrices, linear transformations, determinants, and vector spaces. 

Each of these topics takes on a life of its own, branching into its own special 

emphases and coming back full circle. And each of the main topics or areas is 

entwined with the others; it’s a bit of a symbiotic relationship — the best of 

all worlds.

You can find the systems of linear equations in Chapter 4, vectors in Chap-

ter 2, and matrices in Chapter 3. Of course, that’s just the starting point for 

these topics. The uses and applications of these topics continue throughout 

the book. In Chapter 8, you get the big picture as far as linear transforma-

tions; determinants begin in Chapter 10, and vector spaces are launched in 

Chapter 13.
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Solving Systems of Equations in 
Every Which Way but Loose

A system of equations is a grouping or listing of mathematical statements that 

are tied together for some reason. Equations may associate with one another 

because the equations all describe the relationships between two or more 

variables or unknowns. When studying systems of equations (see Chapter 

4), you try to determine if the different equations or statements have any 

common solutions — sets of replacement values for the variables that make 

all the equations have the value of truth at the same time.

For example, the system of equations shown here consists of three different 

equations that are all true (the one side is equal to the other side) when x = 1 

and y = 2.

The only problem with the set of equations I’ve just shown you, as far as 

linear algebra is concerned, is that the second and third equations in the 

system are not linear.

 A linear equation has the form a
1
x

1
 + a

2
x

2
 + a

3
x

3
 + . . . + a

n
x

n
 = k, where a

i
 is a 

 real number, x
i
 is a variable, and k is some real constant.

Note that, in a linear equation, each of the variables has an exponent of 

exactly 1. Yes, I know that you don’t see any exponents on the xs, but that’s 

standard procedure — the 1s are assumed. In the system of equations I show 

you earlier, I used x and y for the variables instead of the subscripted xs. It’s 

easier to write (or type) x, y, z, and so on when working with smaller systems 

than to use the subscripts on a single letter.

I next show you a system of linear equations. I’ll use x, y, z, and w for the vari-

ables instead of x
1
, x

2
, x

3
, and x

4
.
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The system of four linear equations with four variables or unknowns does 

have a single solution. Each equation is true when x = 1, y = 2, z = 3, and 

w = 4. Now a caution: Not every system of linear equations has a solution. 

Some systems of equations have no solutions, and others have many or infi-

nitely many solutions. What you find in Chapter 4 is how to determine which 

situation you have: none, one, or many solutions.

Systems of linear equations are used to describe the relationship between 

various entities. For example, you might own a candy store and want to 

create different selections or packages of candy. You want to set up a 

1-pound box, a 2-pound box, a 3-pound box, and a diet-spoiler 4-pound box. 

Next I’m going to describe the contents of the different boxes. After reading 

through all the descriptions, you’re going to have a greater appreciation for 

how nice and neat the corresponding equations are.

The four types of pieces of candy you’re going to use are a nougat, a cream, 

a nut swirl, and a caramel. The 1-pounder is to contain three nougats, one 

cream, one nut swirl, and two caramels; the 2-pounder has three nougats, 

two creams, three nut swirls, and four caramels; the 3-pounder has four nou-

gats, two creams, eight nut swirls, and four caramels; and the 4-pounder con-

tains six nougats, five creams, eight nut swirls, and six caramels. What does 

each of these candies weigh?

Letting the weight of nougats be represented by x
1
, the weight of creams 

be represented by x
2
, the weight of nut swirls be represented by x

3
, and the 

weight of caramels be represented by x
4
, you have a system of equations 

looking like this:

The pounds are turned to ounces in each case, and the solution of the system 

of linear equations is that x
1
 = 1 ounce, x

2
 = 2 ounces, x

3
 = 3 ounces, and x

4
 = 4 

ounces. Yes, this is a very simplistic representation of a candy business, but 

it serves to show you how systems of linear equations are set up and how 

they work to solve complex problems. You solve such a system using alge-

braic methods or matrices. Refer to Chapter 4 if you want more information 

on how to deal with such a situation.

Systems of equations don’t always have solutions. In fact, a single equation, 

all by itself, can have an infinite number of solutions. Consider the equation 

2x + 3y = 8. Using ordered pairs, (x,y), to represent the numbers you want, 

some of the solutions of the system are (1,2), (4,0), (−8,8), and (10,−4). But 
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none of the solutions of the equation 2x + 3y = 8 is also a solution of the equa-

tion 4x + 6y = 10. You can try to find some matches, but there just aren’t any. 

Some solutions of 4x + 6y = 10 are (1,1), (4,−1), and (10,−5). Each equation 

has an infinite number of solutions, but no pairs of solutions match. So the 

system has no solution.

Knowing that you don’t have a solution is a very important bit of informa-

tion, too.

Matchmaking by Arranging 
Data in Matrices

A matrix is a rectangular arrangement of numbers. Yes, all you see is a bunch 

of numbers — lined up row after row and column after column. Matrices are 

tools that eliminate all the fluff (such as those pesky variables) and set all the 

pertinent information in an organized logical order. (Matrices are introduced 

in Chapter 3, but you use them to solve systems of equations in Chapter 4.) 

When matrices are used for solving systems of equations, you find the coeffi-

cients of the variables included in a matrix and the variables left out. So how 

do you know what is what? You get organized, that’s how.

Here’s a system of four linear equations:

When working with this system of equations, you may use one matrix to rep-

resent all the coefficients of the variables.
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Notice that I placed a 0 where there was a missing term in an equation. If 

you’re going to write down the coefficients only, you have to keep the terms 

in order according to the variable that they multiply and use markers or 

placeholders for missing terms. The coefficient matrix is so much easier to 

look at than the equation. But you have to follow the rules of order. And I 

named the matrix — nothing glamorous like Angelina, but something simple, 

like A.

When using coefficient matrices, you usually have them accompanied by two 

vectors. (A vector is just a one-dimensional matrix; it has one column and 

many rows or one row and many columns. See Chapters 2 and 3 for more on 

vectors.)

The vectors that correspond to this same system of equations are the vector 

of variables and the vector of constants. I name the vectors X and C.

Once in matrix and vector form, you can perform operations on the matrices 

and vectors individually or perform operations involving one operating on 

the other. All that good stuff is found beginning in Chapter 2.

Let me show you, though, a more practical application of matrices and why 

putting the numbers (coefficients) into a matrix is so handy. Consider an 

insurance agency that keeps track of the number of policies sold by the dif-

ferent agents each month. In my example, I’ll keep the number of agents and 

policies small, and let you imagine how massive the matrices become with a 

large number of agents and different variations on policies.

At Pay-Off Insurance Agency, the agents are Amanda, Betty, Clark, and 

Dennis. In January, Amanda sold 15 auto insurance policies, 10 dwelling/

home insurance policies, 5 whole-life insurance policies, 9 tenant insurance 

policies, and 1 health insurance policy. Betty sold . . . okay, this is already 

getting drawn out. I’m putting all the policies that the agents sold in January 

into a matrix.
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If you were to put the number of policies from January, February, March, and 

so on in matrices, it’s a simple task to perform matrix addition and get totals 

for the year. Also, the commissions to agents can be computed by performing 

matrix multiplication. For example, if the commissions on these policies are 

flat rates — say $110, $200, $600, $60, and $100, respectively, then you create 

a vector of the payouts and multiply.

This matrix addition and matrix multiplication business is found in Chapter 

3. Other processes for the insurance company that could be performed 

using matrices are figuring the percent increases or decreases of sales (of 

the whole company or individual salespersons) by performing operations on 

summary vectors, determining commissions by multiplying totals by their 

respective rates, setting percent increase goals, and so on. The possibilities 

are limited only by your lack of imagination, determination, or need.

Valuating Vector Spaces
In Part IV of this book, you find all sorts of good information and interesting 

mathematics all homing in on the topic of vector spaces. In other chapters, 

I describe and work with vectors. Sorry, but there’s not really any separate 

chapter on spaces or space — I leave that to the astronomers. But the words 

vector space are really just a mathematical expression used to define a par-

ticular group of elements that exist under a particular set of conditions. (You 

can find information on the properties of vector spaces in Chapter 13.)

Think of a vector space in terms of a game of billiards. You have all the ele-

ments (the billiards balls) that are confined to the top of the table (well, they 

stay there if hit properly). Even when the billiard balls interact (bounce off 

one another), they stay somewhere on the tabletop. So the billiard balls are 

the elements of the vector space and the table top is that vector space. You 

have operations that cause actions on the table — hitting a ball with a cue 

stick or a ball being hit by another ball. And you have rules that govern how 

all the actions can occur. The actions keep the billiard balls on the table (in 

the vector space). Of course, a billiards game isn’t nearly as exciting as a 

vector space, but I wanted to relate some real-life action to the confinement 

of elements and rules.



15 Chapter 1: Putting a Name to Linear Algebra

A vector space is linear algebra’s version of a type of classification plan or 

design. Other areas in mathematics have similar entities (classifications and 

designs). The common theme of such designs is that they contain a set or 

grouping of objects that all have something in common. Certain properties 

are attached to the plan — properties that apply to all the members of the 

grouping. If all the members must abide by the rules, then you can make judg-

ments or conclusions based on just a few of the members rather than having 

to investigate every single member (if that’s even possible).

Vector spaces contain vectors, which really take on many different forms. 

The easiest form to show you is an actual vector, but the vectors may actu-

ally be matrices or polynomials. As long as these different forms follow the 

rules, then you have a vector space. (In Chapter 14, you see the rules when 

investigating the subspaces of vector spaces.)

The rules regulating a vector space are highly dependent on the operations 

that belong to that vector space. You find some new twists to some famil-

iar operation notation. Instead of a simple plus sign, +, you find +. And the 

multiplication symbol, ×, is replaced with ,. The new, revised symbols are 

used to alert you to the fact that you’re not in Kansas anymore. With vector 

spaces, the operation of addition may be defined in a completely different 

way. For example, you may define the vector addition of two elements, x and 

y, to be x + y = 2x + y. Does that rule work in a vector space? That’s what you 

need to determine when studying vector spaces.

Determining Values with Determinants
A determinant is tied to a matrix, as you see in Chapter 10. You can think of a 

determinant as being an operation that’s performed on a matrix. The determi-

nant incorporates all the elements of a matrix into its grand plan. You 

have a few qualifications to meet, though, before performing the operation 

determinant.

Square matrices are the only candidates for having a determinant. Let me 

show you just a few examples of matrices and their determinants. The matrix 

A has a determinant |A| — which is also denoted det (A) — and so do matri-

ces B and C.
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The matrices A, B, and C go from a 3 × 3 matrix to a 2 × 2 matrix to a 1 × 1 

matrix. The determinants of the respective matrices go from complicated to 

simple to compute. I give you all the gory details on computing determinants 

in Chapter 10, so I won’t go into any of the computations here, but I do want 

to introduce you to the fact that these square matrices are connected, by a 

particular function, to single numbers.

All square matrices have determinants, but some of these determinants don’t 

amount to much (the determinant equals 0). Having a determinant of 0 isn’t a 

big problem to the matrix, but the value 0 causes problems with some of the 

applications of matrices and determinants. A common property that all these 

0-determinant matrices have is that they don’t have a multiplicative inverse.

For example, the matrix D, that I show you here, has a determinant of 0 and, 

consequently, no inverse.

Matrix D looks perfectly respectable on the surface, but, lurking beneath 

the surface, you have what could be a big problem when using the matrix to 

solve problems. You need to be aware of the consequences of the determi-

nant being 0 and make arrangements or adjustments that allow you to pro-

ceed with the solution.

For example, determinants are used in Chapter 12 with Cramer’s rule (for 

solving systems of equations). The values of the variables are ratios of dif-

ferent determinants computed from the coefficients in the equations. If the 

determinant in the denominator of the ratio is zero, then you’re out of luck, 

and you need to pursue the solution using an alternate method.

Zeroing In on Eigenvalues 
and Eigenvectors

In Chapter 16, you see how eigenvalues and eigenvectors correspond to one 

another in terms of a particular matrix. Each eigenvalue has its related eigen-

vector. So what are these eigen-things?
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First, the German word eigen means own. The word own is somewhat 

descriptive of what’s going on with eigenvalues and eigenvectors. An eigen-

value is a number, called a scalar in this linear algebra setting. And an eigen-

vector is an n × 1 vector. An eigenvalue and eigenvector are related to a 

particular n × n matrix.

For example, let me reach into the air and pluck out the number 13. Next, 

I take that number 13 and multiply it times a 2 × 1 vector. You’ll see in 

Chapter 2 that multiplying a vector by a scalar just means to multiply each 

element in the vector by that number. For now, just trust me on this.

That didn’t seem too exciting, so let me up the ante and see if this next step 

does more for you. Again, though, you’ll have to take my word for the multi-

plication step. I’m now going to multiply the same vector that just got multi-

plied by 13 by a matrix.

The resulting vector is the same whether I multiply the vector by 13 or by 

the matrix. (You can find the hocus-pocus needed to do the multiplication in 

Chapter 3.) I just want to make a point here: Sometimes you can find a single 

number that will do the same job as a complete matrix. You can’t just pluck 

the numbers out of the air the way I did. (I actually peeked.) Every matrix has 

its own set of eigenvalues (the numbers) and eigenvectors (that get multiplied 

by the eigenvalues). In Chapter 16, you see the full treatment — all the steps 

and procedures needed to discover these elusive entities.
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Chapter 2

The Value of Involving Vectors
In This Chapter
▶ Relating two-dimensional vectors to all n × 1 vectors

▶ Illustrating vector properties with rays drawn on axes

▶ Demonstrating operations performed on vectors

▶ Making magnitude meaningful

▶ Creating and measuring angles

The word vector has a very specific meaning in the world of mathematics 

and linear algebra. A vector is a special type of matrix (rectangular array 

of numbers). The vectors in this chapter are columns of numbers with brack-

ets surrounding them. Two-space and three-space vectors are drawn on two 

axes and three axes to illustrate many of the properties, measurements, and 

operations involving vectors.

You may find the discussion of vectors to be both limiting and expanding — 

at the same time. Vectors seem limiting, because of the restrictive structure. 

But they’re also expanding because of how the properties delineated for the 

simple vector are then carried through to larger groupings and more general 

types of number arrays.

As with any mathematical presentation, you find very specific meanings for 

otherwise everyday words (and some not so everyday). Keep track of the 

words and their meanings, and the whole picture will make sense. Lose track 

of a word, and you can fall back to the glossary or italicized definition.

Describing Vectors in the Plane
A vector is an ordered collection of numbers. Vectors containing two or three 

numbers are often represented by rays (a line segment with an arrow on 

one end and a point on the other end). Representing vectors as rays works 

with two or three numbers, but the ray loses its meaning when you deal with 

larger vectors and numbers. Larger vectors exist, but I can’t draw you a nice 
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picture of them. The properties that apply to smaller vectors also apply to 

larger vectors, so I introduce you to the vectors that have pictures to help 

make sense of the entire set.

When you create a vector, you write the numbers in a column surrounded 

by brackets. Vectors have names (no, not John Henry or William Jacob). The 

names of vectors are usually written as single, boldfaced, lowercase letters. 

You often see just one letter used for several vectors when the vectors are 

related to one another, and subscripts attached to distinguish one vector 

from another: u
1
, u

2
, u

3
, and so on.

Here, I show you four of my favorite vectors, named u, v, w, and x:

The size of a vector is determined by its rows or how many numbers it has. 

Technically, a vector is a column matrix (matrices are covered in great detail 

in Chapter 3), meaning that you have just one column and a certain number 

of rows. In this example, vector u is 2 × 1, v is 3 × 1, w is 4 × 1, and x is 5 × 1, 

meaning that u has two rows and one column, v has three rows and one 

column, and so on.

Homing in on vectors in 
the coordinate plane
Vectors that are 2 × 1 are said to belong to R2, meaning that they belong to 

the set of real numbers that come paired two at a time. The capital R is used 

to emphasize that you’re looking at real numbers. You also say that 2 × 1 

vectors, or vectors in R2, are a part of two-space.

Vectors in two-space are represented on the coordinate (x,y) plane by rays. 

In standard position, the ray representing a vector has its endpoint at the 

origin and its terminal point (or arrow) at the (x,y) coordinates designated by 

the column vector. The x coordinate is in the first row of the vector, and the 

y coordinate is in the second row. The following vectors are shown with their 

respective terminal points written as ordered pairs, (x,y):
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Displaying 2 × 1 vectors in standard position
In standard position, 2 × 1 vectors have their endpoints at the origin, at the 

point (0,0). The coordinate axes are used, with the horizontal x-axis and ver-

tical y-axis. Figure 2-1 shows the six vectors listed in the preceding section, 

drawn in their standard positions. The coordinates of the terminal points are 

indicated on the graph.

 

Figure 2-1: 
Vectors 

represented 
by rays.
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Broadening your scope to vectors leaving their origin
You aren’t limited to always drawing 2 × 1 vectors radiating from the origin. 

The following vector is just as correctly drawn by starting with the point 

(–1,4) as an endpoint, and then drawing the vector by moving two units to 

the right and three units down, ending up with the terminal point at (1,1).
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Figure 2-2 shows you the vector in this alternate position. (See “Adding and 

subtracting vectors,” later in this chapter, for more on what’s actually hap-

pening and how to compute the new endpoint.)

 

Figure 2-2: 
Drawing a 

vector in 
nonstandard 

position.
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Notice, in Figures 2-1 and 2-2, that the following vector has the same length 

and points in the same direction with the same slant:

The length of a vector is also called its magnitude. Both the length and the 

direction uniquely determine a vector and allow you to tell if one vector is 

equal to another vector.

 Vectors can actually have any number of rows. You just can’t draw pictures 

to illustrate the vectors that have more than three entries. Also, the applica-

tions for vectors involving hundreds of entries are rather limited and difficult 

to work with, except on computers. All the properties that apply to two-space 
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and three-space vectors also apply to larger vectors; so you’ll find that most of 

my examples use vectors of a more manageable size.

Adding a dimension with 
vectors out in space
Vectors in R3 are said to be in three-space. The vectors representing three-

space are column matrices with three entries or numbers in them. The R part 

of R3 indicates that the vector involves real numbers.

Three-space vectors are represented by three-dimensional figures and 

arrows pointing to positions in space. Vectors in three-space are represented 

by column vectors with dimension 3 × 1. When they’re drawn on the standard 

x, y, and z axes, the y-axis moves left and right, the x-axis seems to come off 

the page, and the z-axis moves up and down. Picture a vector drawn in three-

space as being a diagonal drawn from one corner of a box to the opposite 

corner. A ray representing the following vector is shown in Figure 2-3 with 

the endpoint at the origin and the terminal point at (2,3,4).

 

Figure 2-3: 
The vector 

seems to 
come off the 
page toward 

you.
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Defining the Algebraic and Geometric 
Properties of Vectors

The two-space and three-space vectors are nice to refer to when defining the 

properties involving vectors. Vectors are groupings of numbers just waiting 

to have operations performed on them — ending up with predictable results. 

The different geometric transformations performed on vectors include rota-

tions, reflections, expansions, and contractions. You find the rotations and 

reflections in Chapter 8, where larger matrices are also found. As far as oper-

ations on vectors, you add vectors together, subtract them, find their oppo-

site, or multiply by a scalar (constant number). You can also find an inner 
product — multiplying each of the respective elements together.

Swooping in on scalar multiplication
Scalar multiplication is one of the two basic operations performed on vec-

tors that preserves the original format. When you multiply a 2 × 1 vector by a 

scalar, your result is another 2 × 1 vector. You may not be all that startled by 

this revelation, but you really should appreciate the fact that the scalar main-

tains its original dimension. Such preservation isn’t necessarily the rule in 

mathematics, as you’ll see when doing inner products, later in this chapter.

Reading the recipe for multiplying by a scalar
A scalar is a real number — a constant value. Multiplying a vector by a scalar 

means that you multiply each element in the vector by the same constant 

value that appears just outside of and in front of the vector.

 Multiplying vector v by scalar k, you multiply each element in the vector, v
i 
, 

by the scalar k:

Here’s an example:

You started with a 3 × 1 vector and ended up with a 3 × 1 vector.
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Opening your eyes to dilation and contraction of vectors
Vectors have operations that cause dilations (expansions) and contractions 

(shrinkages) of the original vector. Both operations of dilation and contrac-

tion are accomplished by multiplying the elements in the vector by a scalar.

 If the scalar, k, that is multiplying a vector is greater than 1, then the result is 

a dilation of the original vector. If the scalar, k, is a number between 0 and 1, 

then the result is a contraction of the original vector. (Multiplying by exactly 1 

is multiplying by the identity — it doesn’t change the vector at all.)

For example, consider the following vector:

If you multiply the vector by 3, you have a dilation; if you multiply it by 1/2, 

you have a contraction.

 

In Figure 2-4, you see the results of the dilation and contraction on the origi-

nal vector.

 

Figure 2-4: 
Dilating and 
contracting 
a vector in 

two-space.
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As you can see, the length of the vector is affected by the scalar multiplica-

tion, but the direction or angle with the axis (slant) is not changed. You also 

may have wondered why I only multiplied by numbers greater than 0. The 

rule for contractions of vectors involves numbers between 0 and 1, nothing 

smaller. In the next section, I pursue the negative numbers and 0.
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Multiplying by zero and getting something for your efforts
It probably comes as no surprise to you that multiplying a vector by the 

number 0 results in a vector that has all zeros for its entries. The illustration 

for multiplying by 0 in two-space is a single point or dot. Not unexpected.

But don’t dismiss this all-zero vector. The vector created by having all zeros 

for entries is very important; it’s called the zero vector (another big surprise). 

The zero vector is the identity for vector addition, just as the number 0 is the 

identity for the addition of real numbers. When you add the zero vector to 

another vector, the second vector keeps its identity — it doesn’t change. (For 

more on adding vectors, see the “Adding and subtracting vectors” section, 

later in this chapter.)

Having a negative attitude about scalars
When multiplying a 2 × 1 or 3 × 1 vector by a negative scalar, you see two 

things happen:

 ✓ The size of the vector changes (except with –1).

 ✓ The direction of the vector reverses.

These properties hold for larger vectors, but I can’t show you pictures of 

them. You’ll see how multiplying by a negative scalar affects magnitude later 

in this chapter.

When you multiply a vector by –2, as shown with the following vector, each 

element in the vector changes and has a greater absolute value:

In Figure 2-5, you see the original vector as a diagonal in a box moving 

upward and away from the page and the resulting vector in a larger box 

moving downward and toward you.
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Figure 2-5: 
Multiplying 
a vector by 
a negative 

scalar.
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Adding and subtracting vectors
Vectors are added to one another and subtracted from one another with just 

one stipulation: The vectors have to be the same size. The process of adding 

or subtracting vectors involves adding or subtracting the corresponding 

elements in the vectors, so you need to have a one-to-one match-up for the 

operations.

 To add or subtract two n × 1 vectors, you add or subtract the corresponding 

elements of the vectors:
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Illustrating vector addition
Look at what happens when you do the following vector addition:

Graphing the first vector,

on the coordinate axes, and then adding the vector

to the terminal point of the first vector, your end result is the vector obtained 

from vector addition. Figure 2-6 shows all three vectors.
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Adding nothing changes nothing
When you add the zero (identity) vector to another vector, you don’t change 

anything:
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Whether the zero vector comes first or last in the addition problem, you 

maintain the original vector.

Revisiting with vector subtraction
Vector subtraction is just another way of saying that you’re adding one 

vector to a second vector that’s been multiplied by the scalar –1. So, if you 

want to change a subtraction problem to an addition problem (perhaps to 

change the order of the vectors in the operation), you rewrite the second 

vector in the problem in terms of its opposite.

For example, changing the following subtraction problem to an addition 

problem, and rewriting the order, you have:

Yes, of course the answers come out the same whether you subtract or 

change the second vector to its opposite. The maneuvers shown here are for 

the structure or order of the problem and are used in various applications of 

vectors.

Managing a Vector’s Magnitude
The magnitude of a vector is also referred to as its length or norm. In two-

space or three-space, you see a ray that has a particular length and can visu-

alize where the magnitude’s numerical value comes from. Vectors with more 

than three rows also have magnitude, and the computation is the same no 

matter what the size of the vector. I just can’t show you a picture.

 The magnitude of vector v is designated with two sets of vertical lines, ||v||, 

and the formula for computing the magnitude is

where v
1
, v

2
 , . . . , v

n
 are the elements of vector v.

So, for example, for the vector
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the magnitude is found with:

Think of this example in terms of a right-rectangular prism (a cardboard 

box). The box measures 3 x 2 x 4 feet. How long a rod can you fit in the box, 

diagonally? According to the formula for the magnitude of the vector whose 

numbers are the dimensions of the box, you can place a rod measuring about 

5.4 feet into that box, from corner to corner.

Adjusting magnitude for 
scalar multiplication
The magnitude of a vector is determined by squaring each element in the 

vector, finding the sum of the squares, and then computing the square root 

of that sum. What happens to the magnitude of a vector, though, if you mul-

tiply it by a scalar? Can you predict the magnitude of the new vector without 

going through all the computation if you have the magnitude of the original 

vector?

Consider the following vector:

When you compute the magnitude, you get

Now multiply the vector v by k = 3, 3v, and compute the magnitude of the 

resulting vector.
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The magnitude of the new vector is three times that of the original. So it 

looks like all you have to do is multiply the original magnitude by the scalar 

to get the new magnitude.

Careful there! In mathematics, you need to be suspicious of results where 

someone gives you a bunch of numbers and declares that, because one 

example works, they all do. But in this case, it’s true that, with just a bit of an 

adjustment to the rule, the magnitude is just a multiple of the original.

 The magnitude of the product of a scalar, k, and a vector, v, is equal to the 

absolute value of the scalar and the magnitude of the original vector, |k|·||v||.

And now, to show you that I’m not fooling, here’s how the math works:

The magnitude of kv is equal to the absolute value of k times the magnitude 

of the original vector, v.

 The square root of a square is equal to the absolute value of the number that’s 

being squared:

Using the absolute value takes care of the instances when k is a negative 

number.

So, if you multiply a vector by a negative number, the value of the magnitude 

of the resulting vector is still going to be a positive number.
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For example, if

has the following magnitude

then multiplying the vector, v, by –8, the magnitude of the vector –8v is 

|–8|(11) = 8(11) = 88.

Making it all right with 
the triangle inequality
When dealing with the addition of vectors, a property arises involving the 

sum of the vectors. The theorem involving vectors, their magnitudes, and 

the sum of their magnitudes is called the triangle inequality or the Cauchy-
Schwarz inequality (named for the mathematicians responsible).

 For any vectors u and v, the following, which says that the magnitude of the 

sum of vectors is always less than or equal to the sum of the magnitudes of 

the vectors, holds:

Showing the inequality for what it is
In Figure 2-7, you see two vectors, u and v, with terminal points (x

1
,y

1
) and 

(x
2
,y

2
), respectively. The triangle inequality theorem says that the magnitude 

of the vector resulting from adding two vectors together is either smaller or 

sometimes the same as the sum of the magnitudes of the two vectors being 

added together.
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Figure 2-7: 
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For example, I illustrate the triangle inequality with the addition of the two 

vectors (and, just to make them random, I use the birthdates of my first two 

children):

You see the magnitude of the sum first, ||u + v||. Then I compare the magni-

tude to the sum of the two separate magnitudes. The sums are mighty close, 

but the magnitude of the sum is smaller, as expected.



34 Part I: Lining Up the Basics of Linear Algebra 

Using the Cauchy-Schwarz inequality in averages
The arithmetic mean of two numbers is the value that most people think of 

when they hear average. You find the average of two numbers by adding 

them together and dividing by two. The geometric mean of two numbers is 

another number between the two such that there’s a common ratio between 

(1) the first number and the mean and (2) the mean and the second number.

I’ll explain the concept of geometric mean with an example. The geometric 

mean of 4 and 9 is 6, because the ratio 4/6 is the same as the ratio 6/9. Both 

ratios are equal to 2/3. To find a geometric mean of two numbers, you just 

determine the square root of the product of the numbers.

The geometric mean of a and b is

while the arithmetic mean is

For an example of how the arithmetic and geometric means of two numbers 

compare, consider the two numbers 16 and 25. The arithmetic mean is the 

sum of the two numbers divided by two: (16 + 25) ÷ 2 = 20.5. The geometric 

mean is the square root of the product of the numbers.

In this example, the geometric mean is slightly smaller than the arithmetic 

mean.

In fact, the geometric mean is never larger than the arithmetic mean — the 

geometric mean is always smaller than, or the same as, the arithmetic mean. I 

show you why this is so by using two very carefully selected vectors, u and v, 

which have elements that illustrate my statement.

First, let

Assume, also, that both a and b are positive numbers. You’re probably won-

dering why I’m choosing such awkward entries for the vectors, but you’ll 

soon see the reason for the choices.

Apply the triangle inequality to the two vectors:
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You see that the beginning and ending inequalities are equivalent.

To get to the last step, I used the commutative property of addition on the 

left (changing the order) and found that I had two of the same term. On the 

right, I took the square roots of the squares (and, since both a and b are posi-

tive, I don’t need absolute value) and found that the two terms are also alike.

Now I square both sides of the inequality, divide each side by 2, square the 

binomial, distribute the 2, and simplify by subtracting a and b from each side:

See! The geometric mean of the two numbers, a and b, is less than or equal to 

the arithmetic mean of the same two numbers.

Getting an inside scoop with 
the inner product
The inner product of two vectors is also called its dot product. When u and v 

are both n × 1 vectors, then the notation uTv indicates the inner product of u 

and v.
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 You find the inner product of two n × 1 vectors by multiplying their corre-

sponding entries together and adding up all the products:

Augustin Louis Cauchy: A name 
found on many theorems

Augustin Louis Cauchy was a French mathema-
tician, born in Paris in 1789, a few weeks after 
the fall of the Bastille. His birth, during a time of 
political upheaval, seemed to set the tone for 
the rest of his life.

Cauchy was home-schooled by his father, 
before going on to a university-level education. 
His family was often visited by mathematicians 
of the day — notably Joseph Louis Lagrange 
and Pierre-Simon Laplace — who encouraged 
the young prodigy to be exposed to languages, 
first, and then mathematics.

Cauchy’s first profession was as a military 
engineer, but he “saw the light” and later 
abandoned engineering for mathematics. At 
a time when most jobs or positions for math-
ematicians were as professors at universities, 
Cauchy found it difficult to find such a position 
because of his outspoken religious and political 
stands. He even relinquished a position at the 
École Polytechnique because he wouldn’t take 

the necessary oaths imposed by the French 
government.

At one point, Cauchy responded to a request 
from the then-deposed king, Charles X, to tutor 
his grandson. The experience wasn’t particu-
larly pleasant or successful — perhaps due to 
Cauchy’s yelling and screaming at the prince. 
Cauchy was raised in a political environment 
and was rather political and opinionated. He 
was, more often than not, rather difficult in 
his dealings with other mathematicians. No 
one could take away his wonderful reputation, 
though, for his mathematical work and rigor-
ous proofs, producing almost 800 mathematical 
papers. Cauchy was quick to publish his find-
ings (unlike some mathematicians, who tended 
to sit on their discoveries), perhaps because of 
an advantage that he had as far as getting his 
work in print. He was married to Aloise de Bure, 
the close relative of a publisher.
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You probably noticed that the vector u was written horizontally, instead 

of vertically. The superscript T in the notation uTv means to transpose the 

vector u, to change its orientation. This is merely a notation technicality and 

tries to make it clear what’s happening with the operation. You’ll see more on 

transposing matrices in Chapter 3.

So, for example, if

then the dot product is

Also, you’re probably wondering why in the world you’d ever want to com-

pute an inner product of two vectors. The reason should become crystal 

clear in the following section.

Making it right with angles
Two lines, segments, or planes are said to be orthogonal if they’re perpen-

dicular to one another. Consider the two vectors shown in Figure 2-8, which 

are drawn perpendicular to one another and form a 90-degree angle (or right 

angle) where their endpoints meet. You can confirm that the rays forming the 

vectors are perpendicular to one another, using some basic algebra, because 

their slopes are negative reciprocals.

 The slope of a line is determined by finding the difference between the y-coor-

dinates of two points on the line and dividing that difference by the difference 

between the corresponding x-coordinates of the points on that line.

And, further, two lines are perpendicular (form a right angle) if the product of 

their slopes is –1. (Then they’re negative reciprocals of one another.)
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So what does this have to do with vectors and their orthogonality? (Sure, 

that’s your question!) Read on.

Determining orthogonality (right angles)
When dealing with vectors, you determine if they’re perpendicular to one 

another by finding their inner product. If the inner product of vectors u and v 

is equal to 0, then the vectors are perpendicular.

Referring to the two vectors in Figure 2-8, you have

Now, finding their inner product,

Since the inner product is equal to 0, the rays must be perpendicular to one 

another and form a right angle.

Determining whether two vectors are perpendicular is just fine and dandy, but 

you may be even more interested in what the measure of the angle between 

two rays is when they’re not perpendicular (see the following section).
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Finding the angle between two vectors in two-space
A very nice relationship between the inner product of two vectors, the magni-

tude of the vectors, and the angle between the vectors is that:

where u and v are two vectors in two-space, u · v is the inner product of the 

two vectors, ||u|| and ||v|| are the respective magnitudes of the vectors, and 

cosθ is the measure (counterclockwise) of the angle formed between the two 

vectors.

So you can solve for the measure of angle θ by first finding the cosine:

and then determining the angle θ.

In Figure 2-9, you see the two vectors whose terminal points are (2,6) and 

(–1,5). The angle between the two vectors is the angle θ.
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Find the inner product of the two vectors and the magnitudes of each. Then 

put the numbers in their respective places in the formula:

Using either a calculator or table of trigonometric functions, you find that the 

angle whose cosine is closest to 0.8682 is an angle of about 29.75 degrees. 

The angle formed by the two vectors is close to a 30-degree angle.



Chapter 3

Mastering Matrices 
and Matrix Algebra

In This Chapter
▶ Making note of matrix vocabulary and notation

▶ Operating on matrices every which way

▶ Categorizing matrices by size and format

▶ Recognizing properties of matrices and matrix operations

▶ Finding inverses of invertible matrices

Matrices are essentially rectangular arrays of numbers. The reason 

that you’d ever even consider putting numbers in rectangular arrays 

is to give some order or arrangement to them so that they can be studied or 

used in an application. Matrices have their own arithmetic. What you think 

of when you hear multiplication has just a slight resemblance to matrix mul-

tiplication. When working with matrices, you’ll find just enough familiarity to 

let you feel as though you haven’t left the world of mathematics as you know 

it — and you’ll find just enough differences to let you see the possibilities 

beyond. Matrix algebra has identities, inverses, and operations. You’ll find all 

these good things and more in this chapter.

Getting Down and Dirty 
with Matrix Basics

A matrix is made up of some rows and columns of numbers — a rectangular 

array of numbers. You have the same number of numbers in each row and 

the same number of numbers in each column. The number of rows and col-

umns in a matrix does not have to be the same. A vector is a matrix with just 

one column and one or more rows; a vector is also called a column vector. 
(Turn to Chapter 2 for all you’d ever want to know about vectors.)
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Becoming familiar with matrix notation
I show you here four matrices, A, B, C, and D. Matrices are generally named 

so you can distinguish one matrix from another in a discussion or text. Nice, 

simple, capital letters are usually the names of choice for matrices:

Matrix A has two rows and two columns, and Matrix B has four rows and six 

columns. The rectangular arrays of numbers are surrounded by a bracket to 

indicate that this is a mathematical structure called a matrix. The different 

positions or values in a matrix are called elements. The elements themselves 

are named with lowercase letters with subscripts. The subscripts are the 

index of the element. The element a
12

 is in matrix A and is the number in the 

first row and second column. Looking at matrix A, you see that a
12

 = 3. A gen-

eral notation for the elements in a matrix A is a
ij
 where i represents the row 

and j represents the column. In matrix B, you refer to the elements with b
ij 
. In 

matrix B, the element b
35

 = 20.

Sometimes a rule or pattern is used to construct a particular matrix. The 

rule may be as simple as “Every element is four times the first subscript plus 

three,” or “Every element is the sum of the subscripts in its index.” To avoid 

confusion or misrepresentation, you use symbols to describe a rule for con-

structing the elements of a matrix.

For example, if you want to construct a matrix with three rows and four col-

umns in which each element is the sum of the digits in its index, you write:

A is a 3 × 4 matrix where a
ij
 = i + j.

I explain the × sign in the next section. And here’s matrix A:
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And now I show you matrix B which is a 3 × 3 matrix where b
ij
 = i2 – 2j.

Defining dimension
Matrices come in all sizes or dimensions. The dimension gives the number of 

rows, followed by a multiplication sign, followed by the number of columns. 

Matrix A is a 2 × 2 matrix, because it has 2 rows and 2 columns. Matrix B has 

4 rows and 6 columns, so it’s dimension is 4 × 6. Matrix C is a column matrix, 

because it has just one column; its dimension is 4 × 1. And D is a row matrix 

with dimension 1 × 3.

Determining the dimension of a matrix is important when performing opera-

tions involving more than one matrix. When adding or subtracting matrices, 

the two matrices need to have the same dimension. When multiplying matri-

ces, the number of columns in the first matrix has to match the number of 

columns in the second matrix. You find more on adding, subtracting, multi-

plying, dividing, and finding inverses of matrices later in this chapter. And 

each operation requires paying attention to dimension.

Putting Matrix Operations 
on the Schedule

Matrix operations are special operations defined specifically for matrices. 

When you do matrix addition, you use the traditional process of addition 

of numbers, but the operation has special requirements and specific rules. 

Matrix multiplication is actually a combination of multiplication and addition. 

The operations and rules aren’t difficult; you just have to follow the rules for 

the particular processes carefully.

Adding and subtracting matrices
Adding and subtracting matrices requires that the two matrices involved 

have the same dimension. The process of adding or subtracting two matrices 
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involves performing the respective operation on each pair of corresponding 

elements.

 To add or subtract two m × n matrices, you add (or subtract) each corre-

sponding element in the matrices.

For example, if matrix J represents the number of life insurance policies, car 

insurance policies, and homeowner’s insurance policies sold by eight differ-

ent agents in January, and matrix F represents the number of polices sold 

by those same agents in February, then J + F represents the total number of 

polices for each agent. The matrices (rectangular arrangements) always have 

the same type of policy in each column and the same agents in each row.

The rectangular array allows the sales manager to quickly observe any trends 

or patterns or problems with the production of the salespersons.

Matrix addition is commutative. Commutativity means that you can reverse 

the order, add F + J, and get the same results. Matrix subtraction, however, is 

not commutative. The same way that 4 – 1 doesn’t equal 1 – 4, the subtraction 

J – F isn’t the same as F – J.
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Scaling the heights with 
scalar multiplication
Multiplying two matrices together takes some doing — perhaps like climbing 

the Matterhorn. But scalar multiplication is a piece of cake — more like riding 

the tram to the top of yonder hill. I don’t mean to imply that scalar multiplica-

tion isn’t just as important. You can’t have matrix arithmetic without scalar 

multiplication. I just wanted to set you straight before proceeding.

Multiplying a matrix A by a scalar (constant number), k, means to multiply 

every element in matrix A by the number k out in front of the matrix.

So, multiplying some matrix A by –4,

Making matrix multiplication work
Matrix multiplication actually involves two different operations: multiplica-

tion and addition. Elements in the respective matrices are aligned carefully, 

multiplied, added, and then the grand sum is placed carefully into the result-

ing matrix. Matrix multiplication is only performed when the two matrices 

involved meet very specific standards. You can’t just multiply any two matri-

ces together. Quite often, you can’t even multiply a matrix times itself.

To distinguish matrix multiplication from the multiplication of real numbers, 

you’ll see the asterisk, * , whenever two matrices are multiplied together. So 

multiplying matrix A by matrix B is designated A * B.
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Determining which matrices and what order
To perform matrix multiplication on two matrices, the number of columns 

in the first matrix must be the same as the number of rows in the second 

matrix.

 To perform matrix multiplication on m × n matrix A and p × q matrix B, it is 

necessary that n = p. Furthermore, the resulting matrix A * B has dimension 

m × q.

For example, if matrix A has dimension 3 × 4 and matrix B has dimension 

4 × 7, then the product A * B has dimension 3 × 7. But you can’t multiply 

the matrices in the reverse order. The product B * A cannot be performed, 

because matrix B has seven columns and matrix A has three rows.

Multiplying two matrices
The process used when multiplying two matrices together is to add up a 

bunch of products. Each element in the new matrix created by matrix mul-

tiplication is the sum of all the products of the elements in a row of the first 

matrix times a column in the second matrix. For example, if you’re finding the 

element a
23 

in the product matrix A, you get that element by multiplying all 

the elements in the second row of the first matrix times the elements in the 

third column of the second matrix and then adding up the products.

Let me show you an example before giving the rule symbolically. The exam-

ple involves multiplying the 2 × 3 matrix K times the 3 × 4 matrix L.

The number of columns in matrix K is 3, as is the number of rows in matrix L. 

The resulting matrix, K * L, has dimension 2 × 4.

Now, to find each element in the product matrix, K * L, you multiply the ele-

ments in the rows of K by the elements in the columns of L and add up the 

products:

 ✓ The element a
11 

is found by multiplying the elements in the first row 

of K by the elements in the first column of L: 2(1) + (–3)(5) + 0(5) = 

2 – 15 + 0 = –13
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 ✓ The element a
12 

is found by multiplying the elements in the first row 

of K by the elements in the second column of L: 2(2) + (–3)(6) + 0(4) = 

4 – 18 + 0 = –14

 ✓ The element a
13 

is found by multiplying the elements in the first row 

of K by the elements in the third column of L: 2(3) + (–3)(7) + 0(3) = 

6 – 21 + 0 = –15

 ✓ The element a
14 

is found by multiplying the elements in the first row 

of K by the elements in the fourth column of L: 2(4) + (–3)(6) + 0(2) = 

8 – 18 + 0 = –10

 ✓ The element a
21 

is found by multiplying the elements in the second 

row of K by the elements in the first column of L: 1(1) + 4(5) + (–4)(5) = 

1 + 20 – 20 = 1

 ✓ The element a
22 

is found by multiplying the elements in the second row 

of K by the elements in the second column of L: 1(2) + 4(6) + (–4)(4) = 

2 + 24 – 16 = 10

 ✓ The element a
23 

is found by multiplying the elements in the second row 

of K by the elements in the third column of L: 1(3) + 4(7) + (–4)(3) = 

3 + 28 – 12 = 19

 ✓ The element a
24 

is found by multiplying the elements in the second row 

of K by the elements in the fourth column of L: 1(4) + 4(6) + (–4)(2) = 

4 + 24 – 8 = 20

Placing the elements in their correct positions,

 To perform the matrix multiplication, A * B, where matrix A has dimension 

m × n and matrix B has dimension n × p, the elements in the resulting m × p 

matrix A * B are:

In general, matrix multiplication is not commutative. Even when you have 

two square matrices (the number of rows and number of columns are the 

same), their product usually is not the same when the matrices are reversed. 

For example, matrices C and D are both 3 × 3 matrices. I compute C * D and 

then D * C.
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So, even though, in arithmetic, multiplication is commutative, this is not the 

case with matrix multiplication. Having said that, I have to tell you that there 

are cases where matrix multiplication is commutative. Here are the special 

cases in which matrix multiplication is commutative:

 ✓ When multiplying by the multiplicative identity on a square matrix

 ✓ When multiplying by the inverse of the matrix — if the matrix does, 

indeed, have an inverse

I refer to commutativity again, later, in the “Identifying with identity matri-

ces,” “Tackling the properties under multiplication,” and “Establishing the 

properties of an invertible matrix” sections.

Putting Labels to the Types of Matrices
Matrices are traditionally named using capital letters. So you have matrices 

A, B, C, and so on. Matrices are also identified by their structure or elements; 

you identity matrices by their characteristics just as you identify people by 

their height or age or country of origin. Matrices can be square, identity, tri-

angular, singular — or not.
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Identifying with identity matrices
The two different types of identity matrices are somewhat related to the two 

identity numbers in arithmetic. The additive identity in arithmetic is 0. If 

you add 0 to a number, you don’t change the number — the number keeps 

its identity. The same idea works for the multiplicative identity: The multi-

plicative identity in arithmetic is 1. You multiply any number by 1, and the 

number keeps its original identity.

Zeroing in on the additive identity
The additive identity for matrices is the zero matrix. A zero matrix has ele-

ments that are all zero. How convenient! But the zero matrix takes on many 

shapes and sizes. The additive identity for a 3 × 4 matrix is a 3 × 4 zero 

matrix. Matrices are added together only when they have the same dimen-

sion. When adding numbers in arithmetic, you have just one 0. But in matrix 

addition, you have more than one 0 — in fact, you have an infinite number of 

them (technically). Sorta neat.

In addition to having many additive identities — one for each size matrix — 

you also have commutativity of addition when using the zero matrix. Addition 

is commutative, anyway, so extending commutativity to the zero matrix 

should come as no surprise.

Matrices A, B, and C are added to their zero matrices:
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Marching in step with the multiplicative identity
The multiplicative identity for matrices has one thing in common with the 

additive identity and, then, one big difference. The common trait of the multi-

plicative identity is that the multiplicative identity also comes in many sizes; 

the difference is that the multiplicative identity comes in only one shape: a 

square. A square matrix is n × n; the number of rows and number of columns 

is the same.

The multiplicative identity is a square matrix, and the elements on the main 

diagonal running from the top left to the bottom right are 1s. All the rest of 

the elements in the matrix are 0s. Here, I show you three identity matrices 

with dimensions 2 × 2, 3 × 3, and 4 × 4, respectively.

When you multiply a matrix times an identity matrix, the original matrix stays 

the same — it keeps its identity. Of course, you have to have the correct 

match-up of columns and rows.

For example, let me show you matrix D being multiplied by identity matrices. 

Matrix D is a 3 × 2 matrix. When multiplying D * I, the identity matrix, I, has to 

be a 2 × 2 matrix. When multiplying I * D, the identity matrix has to be a 3 × 3 

matrix.

The size of the identity matrix is pretty much dictated by the dimension of 

the matrix being multiplied and the order of the multiplication.

In the “Multiplying two matrices” section, earlier in this chapter, I mention 

that multiplication, in general, is not commutative. The exception to that rule 

is when a square matrix is multiplied by its identity matrix.
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For example, consider a 2 × 2 matrix being multiplied by a 2 × 2 identity matrix:

Whether the identity matrix comes first or second in the multiplication, the 

original matrix keeps its identity. You have commutativity of multiplication in 

this special case.

Triangulating with triangular 
and diagonal matrices
Matrices labeled as being triangular or diagonal have the common character-

istic that they’re square matrices. A triangular matrix is either upper triangu-
lar or lower triangular. The best way to define or describe these matrices is to 

show you what they look like, first.

Matrix A is an upper triangular matrix; all the elements below the main diago-

nal (the diagonal running from upper left to lower right) are 0s. Matrix B is a 

lower triangular matrix; all the elements above the main diagonal are 0s. And 

matrix C is a diagonal matrix, because all the entries above and below the 

main diagonal are 0s.

Triangular and diagonal matrices are desirable and sought-after in matrix 

applications. You’ll find the triangular and diagonal matrices used when solv-

ing systems of equations and computing determinants (see Chapter 11).

Doubling it up with singular 
and non-singular matrices
The classification as singular or non-singular matrices applies to just square 

matrices. Square matrices get quite a workout in linear algebra, and this is 

just another example.

A square matrix is singular if it has a multiplicative inverse; a matrix is 

non-singular if it does not have a multiplicative inverse.
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 Two numbers are multiplicative inverses if their product is 1 (the multiplica-

tive identity). For example, 4 and 1/4 are multiplicative inverses. The numbers 
3/5 and 5/3 are multiplicative inverses. The number 0 has no multiplicative 

inverse, because there’s no number you can multiply 0 by to get a result of 1.

When a matrix has a multiplicative inverse, the product of the matrix and its 

inverse is equal to an identity matrix (multiplicative identity). And, further-

more, you can multiply the two matrices involved in either order (commu-

tativity) and still get the identity. Later in this chapter, in “Investigating the 

Inverse of a Matrix,” you see what a matrix’s inverse looks like and how to 

find it.

Connecting It All with Matrix Algebra
Arithmetic and matrix algebra have many similarities and many differences. 

To begin with, the components in arithmetic and matrix algebra are com-

pletely different. In arithmetic, you have numbers like 4, 7, and 0. In matrix 

algebra, you have rectangular arrays of numbers surrounded by a bracket.

In “Making matrix multiplication work” and “Identifying with identity matri-

ces,” earlier in this chapter, I point out when the commutative property 

applies to matrices. In this section, I get down-and-dirty and discuss all the 

properties you find when working with matrix algebra. You need to know if 

a particular operation or property applies so that you can take advantage of 

the property when doing computations.

Delineating the properties under addition
Matrix addition requires that the matrices involved have the same dimen-

sion. Once the dimension question is settled, then you have two very nice 

properties applied to addition: commutativity and associativity.

Commutativity
 Matrix addition is commutative; if you add matrix A to matrix B, you get the 

same result as adding matrix B to matrix A:

 A + B = B + A

In the “Adding and subtracting matrices” section, earlier in this chapter, you 

see how the corresponding elements are added together to accomplish matrix 

addition. Because adding real numbers is commutative, the sums occurring 

in matrix addition are also the same when added in the reverse order.
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Associativity
 Matrix addition is associative. When adding three matrices together, you get 

the same result if you add the sum of the first two to the third as you do when 

you add the first to the sum of the second two:

(A + B) + C = A + (B + C)

Note that the order doesn’t change, just the groupings. The following equa-

tions are equivalent:

Tackling the properties 
under multiplication
When multiplying numbers together, you have just one process or operation 

to consider. When you multiply 6 × 4, you know from your times tables that 

the answer is 24. You don’t have any other type of multiplication that gives 

you a different result. Multiplication of matrices goes in one of two different 

directions. Matrix multiplication is described in detail in “Making matrix mul-

tiplication work,” earlier in this chapter. And another type of multiplication, 

scalar multiplication, is covered in “Scaling the heights with scalar multiplica-

tion,” earlier in this chapter.

 The multiplication processes or operations involving matrices have very 

specific properties associated with them. You find some properties closely 

related to real number multiplication and other properties that are very spe-

cial to just matrices:

 ✓ A * B ≠ B * A: Matrix multiplication, as a rule, is not commutative. 

The exceptions involve multiplying a matrix by its inverse or by the 
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multiplicative identity. Or, if you want to consider a rather unproductive 

exercise, you could multiply a square matrix by a square zero matrix of 

the same size and consider the process to be commutative. (You do get 

the same answer.)

 ✓ kA = Ak: Scalar multiplication is commutative — you can put the scalar 

in front of the matrix or behind it and get the same answer:

 ✓ (A * B) * C = A * (B * C): Matrix multiplication is associative when you 

deal with three matrices. Multiplying the product of two matrices times 

the third gives you the same result as multiplying the first matrix times 

the product of the last two. The following equations are equivalent:

 ✓ (kA) * B = k (A * B): Multiplying a matrix by a scalar and then that result 

times a second matrix gives the same result as you get if you first mul-

tiply the two matrices together and then multiply by the scalar. This 

could be called a mixed associative rule, mixing the scalar and the matri-

ces. The following equations are equivalent:

 ✓ (kl)A = k(lA): Another mixed associative rule allows you to associate the 

two scalars and multiply the product times a matrix, or, if you prefer, 

you can multiply one of the scalars times the matrix and then that prod-

uct times the other scalar.
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Distributing the wealth using matrix 
multiplication and addition
The distributive property in arithmetic involves multiplying the sum of two 

numbers by another number. The distributive rule is written: a(b + c) = ab + 

ac. The distributive rule states that you get the same result if you multiply a 

number times the sum of two other numbers as you do if you first multiply 

each of the numbers involved in the sum by the third number before adding 

the results together. The distributive rule works in matrix algebra, too:

 A * (B + C) = A * B + A * C

 Adding two matrices together and then multiplying the sum by a third matrix 

gives you the same result as multiplying each of the matrices by the third 

matrix before finding the sum. The following equations are equivalent:

Changing the order in the distribution also creates a true statement:

 (B + C) * A = B * A + C * A

Here are three other variations on the distributive rule (which incorporate 

the use of scalars):

 k(A + B) = kA + kB

 (k + l)A = kA + lA

 (A + B)k = Ak + Bk

Transposing a matrix
Transposing a matrix is like telling all the elements in the matrix to switch 

places. When you perform a matrix transpose, the element in row 1, column 4 

moves to row 4, column 1. The effect is that the rows become columns, and 

the columns become rows. A 3 × 5 matrix becomes a 5 × 3 matrix when you 

perform a matrix transpose.
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 Performing a matrix transpose on matrix A, the notation is AT. When A is 

changed to AT, each a
ij
 in A becomes a

ij
 in AT:

 The transpose of the sum of two matrices is equal to the sum of the two 

transposes:

(A + B)T = AT + BT

The transpose of the product of two matrices is equal to the product of the 

two transposes in the opposite order:

(A * B)T = BT * AT

Implied in this rule is that multiplication is possible (the dimensions fit). Here 

are two matrices, A and B, their product, the transpose of their product, and 

the product of their transposes (in reverse order).

And matrix multiplication is not generally commutative, so multiplying AT * 

BT does not give you the same result as multiplying in the reverse order.

Zeroing in on zero matrices
The zero matrix has all zeros, and some interesting properties arise out of 

this situation.

 When you add a matrix to the scalar multiple created by multiplying by –1, 

you get the zero matrix:

A + (–1)A = 0
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 AB = 0 does not require that A = 0 or B = 0. This rule is in direct contradiction 

to the zero property of arithmetic, which says that in order for the product of 

two numbers to be 0, at least one of them has to be a 0. In the world of matri-

ces, the zero property says that you can get a 0 matrix without either matrix 

in the product being a zero matrix. For example, here are matrices A and B, 

neither of which is a zero matrix:

Establishing the properties 
of an invertible matrix
An invertible matrix is a matrix that has an inverse. “That’s a big help!” you 

say. Okay, let me try again. An invertible matrix is a square matrix. If matrix 

A is invertible, then there’s also a matrix A–1 where, when you multiply the 

two matrices, A * A–1, you get an identity matrix of the same dimension as 

A and A–1.

For example, matrix B is invertible, because B * B–1 = I.

Also, as I mention in “Marching in step with the multiplicative identity,” ear-

lier in this chapter, when you multiply a matrix and its inverse together, the 

order doesn’t matter. Either order of multiplication produces the identity 

matrix:

Not all matrices are invertible. For example, a matrix with a row of 0s or a 

column of 0s isn’t invertible — it has no inverse. To show you why a matrix 

with a row or column of 0s has no inverse, consider this multiplication prob-

lem involving two 3 × 3 matrices, the first with a row of 0s.
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The bottom row in the product of the two matrices is all 0s. The bottom row 

can never have a 1 in the last position, so such a matrix can never be the 

identity matrix. When you have a matrix with a row of 0s or a column of 0s, 

there’s no matrix multiplier for it that can be the matrix’s inverse; such matri-

ces cannot have inverses.

Investigating the Inverse of a Matrix
Many square matrices have inverses. When a matrix and its inverse are 

multiplied together, in either order, the result is an identity matrix. Matrix 

inverses are used to solve problems involving systems of equations and to 

perform matrix division.

Wassily Wassilyovitch Leontief: 
The friend of industrial planners

Wassily Leontief is probably best known in the 
world of mathematics for his work on input-
output models — how inputs from one industry 
affect production of outputs for another indus-
try, and how this is all kept in balance. Input-
output models are best investigated using 
matrices. Input-output models allow for approx-
imate predictions for the change in demand for 
inputs resulting from a change in demand for 
the finished product.

Leontief was born in 1905 or 1906, either in 
Germany or Russia, depending on the source. He 

entered the University of Leningrad in 1921 and 
graduated in 1924, earning a Learned Economist 
degree (somewhat like today’s master’s degree); 
he earned a PhD in Economics in 1928. Leontief’s 
career included employment at the University of 
Kiel, advisor to the Ministry of Railroads in China, 
working for the U.S. National Bureau of Economic 
Research as consultant at the Office of Strategic 
Services during World War II, and professor 
of economics at Harvard University. Leontief’s 
Nobel Prize in Economics was awarded in 1973 
for his work on input-output tables.
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Quickly quelling the 2 × 2 inverse
In general, if a matrix has an inverse, that inverse can be found using a 

method called row reduction. (You can find a complete description of that 

process later in the “Finding inverses using row reduction” section.) Happily, 

though, a much quicker and neater process is available for 2 × 2 matrices. 

To find the inverse (if it exists) of a 2 × 2 matrix, you switch some elements, 

negate some elements, and divide all the newly positioned elements by a 

number created from the original elements.

It’s easier to just show you than it is to try to describe this in words. For 

starters, consider a general 2 × 2 matrix M with the elements a, b, c, and d.

 To find the inverse of matrix M, you first compute the number: ad – bc. This 

number is the difference between the two cross-products of the elements in 

the matrix M. Next, you reverse the elements a and d, and then you negate 

(change to the opposite) the elements b and c. Now divide each adjusted ele-

ment by the number computed from the cross-products:

Because you’re dividing by the number obtained from ad – bc, it’s essential 

that the difference ad – bc not be equal to 0.

For example, to find the inverse of the following matrix A,

you first compute the number that will be dividing each element: (4)(–3) – 

(–7)(2) = –12 + 14 = 2. The divisor is 2.

Now reverse the positions of the 4 and –3, and change the –7 to 7 and the 2 

to –2. Divide each element by 2.
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When you multiply the original matrix A times the inverse A–1, the result is 

the 2 × 2 identity matrix.

 The quick rule for finding the inverse of a 2 × 2 matrix gives a good opportu-

nity to show you why some matrices do not have inverses. If the number ad – 

bc (obtained by finding the difference of the cross-products) is equal to 0, then 

you’d have to divide by 0. That’s an impossible situation — no numbers have 

0 in their denominator. For example, the matrix B has no inverse. The cross-

products are both 24, and their difference is 0.

Some matrices, such as matrix B, have no inverse.

Finding inverses using row reduction
The quick rule for finding inverses of 2 × 2 matrices is the desirable method 

for matrices of that dimension. For larger square matrices, the inverses are 

found by performing additions and multiplications in the form of row opera-
tions. Before showing you how to find the inverse of a 3 × 3 matrix, let me first 

describe the different operations possible under row reduction.

Rendering row reduction rules
Row operations are performed with the goal of changing the format into 

something more convenient. The convenient part depends on the particular 
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application, so convenient in one case may be different from convenient in 

another case. In any case, row reductions change the first matrix to another 

matrix that is equivalent to the first.

The row operations are

 1. Interchange any two rows.

 2. Multiply all the elements in a row by a real number (not 0).

 3. Add multiples of the elements of one row to the elements of 

another row.

Consider row operations on matrix C:

 1. Interchange rows 1 and 4.

  The notation R
1
 ↔ R

4
 means to replace one row with the other.

 2. Multiply all the elements in row 3 by 1/5.

  The notation 1/5 R
3
 → R

3
 is read, “One-fifth of each element in row 3 

becomes the new row 3.”

 3. Multiply all the elements in row 1 by –5, and add them to row 2.

  The notation –5R
1
 + R

2
 → R

2
 is read, “Negative 5 times each element in 

row 1 added to the elements in row 2 produces a new row 2.” Note that 

the elements in row 1 do not change; you just use the multiples of the 

elements in the operation to create a new row 2.
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You may not see any point to my row operations, but each one has a real 

application to working with matrices. The importance of the operations is 

evident when solving for an inverse matrix and, also, when working with sys-

tems of equations in Chapter 4.

Stepping through inverse matrix steps
When you have a square matrix whose dimensions are greater than 2 × 2, you 

solve for the inverse of that matrix (if it exists) by creating a double-width 

matrix with the original on the left and an identity matrix on the right. Then 

you go through row operations to transform the left-hand matrix into an 

identity matrix. When you’re finished, the matrix on the right is the original 

matrix’s inverse.

For example, finding the inverse for matrix D, you put a 3 × 3 identity matrix 

next to the elements in D.

You want to change the 3 × 3 matrix on the left to the identity matrix (a 

matrix with a diagonal of 1s and the rest 0s). You must use proper row opera-

tions. Note that the element in row 1, column 1, is already a 1, so you con-

centrate on the elements below that 1. The element in row 3 is already a 0, so 

you just have to change the –1 in row 2 to a 0. The row operation you use is 

to add row 1 to row 2, creating a new row 2. You don’t have to multiply row 1 

by anything (technically, you’re multiplying it by 1).

Whatever you do to the elements in the left-hand matrix should also be done 

to the right-hand matrix. You’re concentrating on changing the left-hand 

matrix to an identity matrix, and the elements on the other side just have to 
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“come along for the ride.” The result of the row operations is that you now 

have a 0 for element d
21

. In fact, both the elements under the 1 are 0s.

Now move to the second column. You want a 1 in row 2, column 2, and 0s 

above and below that 1. First multiply row 2 by 1/5. Every element, all the way 

across, gets multiplied by that fraction.

To get the 0s above and below the 1 in column 2, you multiply row 2 by –2 

and add it to row 1 to get a new row 1. And you multiply row 2 by –1 and add 

it to row 3 to get a new row 3. Note that, in both cases, row 2 doesn’t change; 

you’re just adding a multiple of the row to another row.

Your first two columns in the left-hand matrix look good. You have 1s on the 

main diagonal and 0s above and below the 1s. You need a 1 in row 3, column 

3, so multiply row 3 by 5/2.
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Now create 0s above the 1 in column 3 by multiplying row 3 by 6/5 and adding 

it to row 1, and then multiplying row 3 by –3/5 and adding it to row 2.

You now have the identity matrix on the left and the inverse of matrix D on 

the right.

And, of course, D * D–1 also equals the identity matrix.



Chapter 4

Getting Systematic with 
Systems of Equations

In This Chapter
▶ Solving systems of equations algebraically

▶ Visualizing solutions with graphs

▶ Maximizing the capabilities of matrices to solve systems

▶ Reconciling the possibilities for solutions of a system of equations

Systems of equations show up in applications of just about every math-

ematical subject. You solve systems of equations in first-year algebra 

just to get the feel for how systems behave and how to best approach finding 

a solution.

Systems of equations are used to represent different countable entities and 

how the different entities relate to one another. The systems may consist of 

all linear equations, or there could even be nonlinear equations. (The nonlin-

ear equations belong in another setting, though — not in this book.) In this 

chapter, you see how to quickly and efficiently solve a simple system algebra-

ically. Then you find out how to make matrices work for you when the system 

of equations gets too large and cumbersome.

Single solutions of systems of equations are written by listing the numerical 

value of each variable or as an ordered pair, triple, quadruple, and so on. To 

write multiple solutions, I show you how to introduce a parameter and write 

a nice, tidy rule.

Investigating Solutions for Systems
A system of equations has a solution when you have at least one set of num-

bers that replaces the variables in the equations and makes each equation 

read as a true statement. A system of equations may have more than one 
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solution. Systems with more than one solution generally have an infinite 

number of solutions, and those solutions are written as an expression or rule 

in terms of a parameter.

Recognizing the characteristics 
of having just one solution
A system of equations is consistent if it has at least one solution. A system 

with exactly one solution has two characteristics that distinguish it from 

other systems: The system consists of linear equations, and you have as 

many independent equations as there are variables. The two characteristics 

don’t guarantee a solution, but they must be in place for you to have that 

single solution.

The first prerequisite for a single solution is that the system must contain 

linear equations. A linear equation is of the form: y = a
1
x

1
 + a

2
x

2
 + a

3
x

3
 + . . . + 

a
n
x

n
 where the a multipliers are real numbers and the x factors are variables. 

A linear system consists of variables with exponents or powers of 1.

The following system of linear equations has a single solution, x = 2, y = 3, 

and z = 1:

The solution of the system is also written as the ordered triple (2,3,1). When 

writing this system, I used the consecutive letters x, y, and z, just to avoid 

subscripts. When systems contain a large number of variables, it’s more effi-

cient to use subscripted variables such as x
0
, x

1
, x

2
, and so on. None of the 

variables are raised to a higher, negative, or fractional power.

The second requirement for a single solution is that the system of equations 

have as many independent equations as there are variables in the system. If 

the system contains three variables, then it must contain at least three inde-

pendent equations. So, what’s with this independent business? When equa-

tions are independent, that just means that none of the equations is a multiple 

or combination of multiples of the other equations in the system.

For example, the following system has two equations and two unknowns or 

variables:
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Including the equation –4x
1
 – 6x

2
 = –4 in the system increases the number of 

equations in the system but introduces an equation that isn’t independent. 

The new equation is obtained by multiplying the top equation by –2, multiply-

ing the bottom equation by 2, and adding the two multiples together.

Writing expressions for infinite solutions
Some systems of equations have many solutions — an infinite number, in 

fact. When systems have multiple solutions, you’ll find a pattern or rule that 

predicts what those solutions are. For example, the following system has 

solutions: (3,1,1), (8,5,2), (13,9,3), (–2,–3,0), and many, many more.

The pattern in the solutions is that x is always two less than five times z, and 

y is always three less than four times z. An efficient way to write the solu-

tions as a rule is to use an ordered triple and a parameter (a variable used 

as a base for the rule). Starting with the ordered triple (x, y, z), replace the z 

with the parameter k. That makes the first equation read –x + y + k = –1 and 

the second equation read –x + 2y – 3k = –4. Solving for y in this system of two 

equations gives you y = 4k – 3. Substituting this value for y in the third equa-

tion gives you x = 5k – 2. The ordered triple is now written (5k – 2, 4k – 3, 

k). You find a new solution by choosing a value for k and solving for x and y 

using the rules. For example, if you let k be equal to 4, then x = 5(4) – 2 = 18 

and y = 4(4) – 3 = 13; the solution in this case is (18, 13, 4).

Graphing systems of two 
or three equations
A picture is worth a thousand words. Sounds good, and you do see several 

pictures or graphs in this section, but I can’t keep from adding some words — 

maybe not a thousand, but plenty.

Systems of two equations and two variables are represented in a graph by 

two lines. When the system has a single solution, you see two lines inter-

secting at a single point — the solution of the system. When two lines have 

no solution at all, the graph of the system has two parallel lines that never 

touch. And systems that have an infinite number of solutions have two lines 

that completely overlap one another — you actually just see one line.
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Systems of three equations are a bit harder to draw or graph. An equation with 

three variables is represented by a plane — a flat surface. You draw these 

planes in three-space and have to imagine an axis coming off the page toward 

you. Three planes intersect in a single point, or they may intersect in a single 

line. But sometimes planes don’t have any common plane or line at all.

Graphing two lines for two equations
Systems of equations with two variables have a solution, many solutions, or 

no solutions.

 The graph of the system of equations ax + by = c and dx + ey = f, where x and y 

are variables and a, b, c, d, e, and f are real numbers, has:

 ✓ Intersecting lines (exactly one solution) when the system is consistent 
and the equations are independent

 ✓ Parallel lines (no solution) when the system is inconsistent

 ✓ Coincident lines (infinite solutions) when the system is consistent and 

the equations are dependent

A consistent and independent system of two equations has a single point of 

intersection. The equations are independent because one equation isn’t a 

multiple of the other. In Figure 4-1, you see the graphs of the two lines in the 

following system with the solution shown as the point of intersection:

A consistent and dependent system of two equations has an infinite number 

of points of intersection. In other words, every point on one of the lines is a 

point on the other line. The graph of such a system is just a single line (or 

two lines on top of one another). An example of such a system is:

You may have noticed that the first equation is twice the second equation. 

When one equation is a nonzero multiple of the other, their graphs are the 

same, and, of course, they have the same solutions.
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Figure 4-1: 
Two lines 
that inter-

sect in a 
single point.

 

x + y  = 5

x − y = –3

(1,4)

1

1

The last situation involving systems of equations represented by lines is that 

involving inconsistent systems. You find more on inconsistent systems in 

the “Dealing with Inconsistent Systems and No Solution” section, later in this 

chapter; there, I also show you the graph of parallel lines.

Taking a leap with three planes
A plane is a flat surface. In mathematics, a plane goes on forever and ever. It’s 

a bit difficult to draw “forever,” so drawing a close-up view shows the general 

slant and direction of the plane, and you get to project from there. The equa-

tion of a plane has the form ax + by + cz = 0, where x, y, and z are the variables 

(and the names of the three axes), and a, b, and c are real numbers. The 

more interesting situations involving planes are when they all meet in just one 

point — sort of like two walls and the floor meeting in a corner — or when they 

all meet along a straight line, like the extra-wide blades of a paddle wheel.
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In Figure 4-2, you see an illustration of three planes meeting — the front, 

bottom, and left side of a box. The planes meet in a single point, the corner.

 

Figure 4-2: 
Three 

planes inter-
sect at a 

point.
 

In Figure 4-3, you see three planes all sharing the same straight line — sort of 

like the axle of a paddle wheel.

 

Figure 4-3: 
Three 

planes shar-
ing a line.
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Dealing with Inconsistent 
Systems and No Solution

An inconsistent system of two equations has two lines that never intersect. 

The lines are parallel, so the system has no solution. Figure 4-4 illustrates the 

following system:

 

Figure 4-4: 
Distinct 
parallel 

lines never 
intersect.

 

6x + 3y = 1

2x + y = 5

1

1

The system is inconsistent because the lines have the same slope but dif-

ferent y-intercepts. The first equation, 2x + y = 5, can be rewritten in the 
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slope-intercept form as y = –2x + 5. With the equation written in the slope-

intercept form, you see that the slope of the line is –2, and the line crosses 

the y-axis at (0,5).

 The slope-intercept form of a linear equation in two variables is y = mx + b, 
where m is the slope of the line and b is the y-intercept.

The second equation, 6x + 3y = 1, is rewritten as 3y = –6x + 1 and then, dividing 

by 3, as y = –2x + 1/3. This line also has a slope of –2, but its y-intercept is (0,1/3). 

The two lines are parallel “and ne’er the twain shall meet” (whatever a twain is).

A logical leap from parallel lines is into the world of parallel planes. (Sounds 

like a science-fiction novel.) Planes that have the same slant but different 

intersections of the axes will never intersect. Figure 4-5 shows parallel planes.

 

Figure 4-5: 
These three 

planes are 
always the 
same dis-

tance apart.
 

Solving Systems Algebraically
Solving a system of equations means that you find the common solution or 

solutions that make each of the equations into a true statement at the same 

time. Finding the solutions for systems is sometimes a rather quick proce-

dure, if the equations are few and the numbers in the equations cooperative. 

You have to assume the worst, though, and be prepared to use all the tools 

at your command to solve the systems — and be pleasantly surprised when 

they happen to work out without too much ado.

The tools or methods for solving systems of equations algebraically are

 ✓ Elimination: You eliminate one of the variables in the system to make it 

a simpler system, while preserving the original relationship between the 

variables.

 ✓ Back substitution: You use back substitution after you’ve found a value 

for one of the variables and then solve for the values of the other variables.
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Starting with a system of two equations
A system of two equations and two unknowns is best represented by two 

lines. The point of intersection of the lines corresponds to the solution of the 

system. You see how this works in the earlier section “Graphing two lines for 

two equations.”

To solve the following system of equations, I first use elimination to eliminate 

the ys and then back-substitute to find the value of y after finding x.

Add the two equations together. Then divide each side of the equation by 6:

You find that the value of x = 4. Now back-substitute into one of the equations to 

get the value of y. Using the first equation, and letting x be equal to 4, you get

 2(4) + 3y = 23

 8 + 3y = 23

 3y = 15

 y = 5

So the one solution for the system is x = 4 and y = 5, which is written (4,5) as 

an ordered pair.

The previous system of equations had a very convenient set of terms: the two 

y-terms that were opposites of one another. More likely than not, you won’t 

have that very nice situation when solving the systems. The next system has 

a more common disjointedness between the numbers.

Neither set of coefficients on the variables is the same, opposite of one 

another, or even the multiple of one another; you always hope for one of 
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these convenient possibilities. My choice, now, would be to take advantage 

of the opposite signs on the ys, so I won’t have to multiply by a negative 

number. To solve this system, multiply the terms in the first equation by 3 

and the terms in the second equation by 5. These steps create 15y and –15y 

in the two equations. Adding the equations together, you eliminate the ys.

Now, armed with the fact that x = –1, substitute back into the first equation to 

solve for y. You get 3(–1) + 5y = 12, 5y = 15, and y = 3. The solution is (–1,3).

Extending the procedure to 
more than two equations
When solving systems of equations by elimination and back-substitution, you 

need to have a plan and be systematic when working through the steps. First, 

you identify a particular variable to be eliminated; then you perform mul-

tiplications and additions to eliminate that variable from all the equations. 

If more than one variable still appears in the equations after performing an 

elimination, you go through the process again.

The following operations may be performed (preserving the original relation-

ship between the variables), giving you the solution to the original equation:

 ✓ Interchange two equations (change their order).

 ✓ Multiply or divide each term in an equation by a constant number (≠ 0).

 ✓ Add two equations together, combining like terms.

 ✓ Add the multiple of one equation to another equation.

The following system has four variables and four equations:
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My choice is to eliminate the ws first. This choice is somewhat arbitrary, but 

it’s also considerate; I want to take advantage of the three coefficients that 

are 1 or –1, and the coefficient –2.

Add row 2 to two times row 1; add row 1 to row 3; and add row 4 to row 3. I’m 

using row reduction (row operation) notation to show what the steps are. For 

example, 2R
1
 + R

2
 → 5x + 4y – 5z = 27 means: “Adding two times row 1 plus 

row 2 gives you this new equation, 5x + 4y – 5z = 27.” The notation used here 

is similar to that used when writing row operation notation for matrices (see 

Chapter 3). The difference between the notation for matrices and the nota-

tion for equations is that, with matrices, I indicate a row number after the 

arrow. With equations, I show the resulting equation after the arrow.

  

Now I have a system of three equations with three unknowns. Because the 

last equation doesn’t have a z term, I choose to eliminate the z in the other 

two equations. Multiply the first equation by 3 and the second equation by 

–5. Then add those two equations together:

  

The new system of equations consists of the sum from the previous step and 

the equation that had no z in it. The new system has just xs and ys for variables. 

Multiply the first equation by 14 and the second equation by 3 to create coeffi-

cients for the y terms that are opposites. Then add the new equations together:

Dividing each side of 68x = 68 by 68, you get x = 1. Then take the fact that 

x = 1 and substitute into 7x + 6y = 25 to get 7(1) + 6y = 25, which tells you that 

y = 3. Now put the 1 and 3 into 5x + 4y – 5z = 27 to get 5(1) + 4(3) – 5z = 27, 

which becomes 17 – 5z = 27, or z = –2. Similarly, with the values of x, y, and 

z in any of the original equations, you get w = –4. The solution, written as an 

ordered quadruple, is (1, 3, –2, –4).
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Aren’t you glad that there’s another choice of procedure to use when solv-

ing these equations? Not that you don’t just love these algebraic adventures. 

But I do have an alternative to offer for solving large systems of equations. 

You just need some information on matrices and how they work in order to 

use the method effectively. For the scoop on matrices, see Chapter 3; for the 

method of solving equations, see “Instituting inverses to solve systems” and 

“Introducing augmented matrices,” later in this chapter.

Revisiting Systems of Equations 
Using Matrices

Solving systems of equations algebraically is the traditional method and what 

has been used by mathematicians since such concepts were developed or 

discovered. With the advent of computers and handheld calculators, matrix 

algebra and matrix applications are much preferred when dealing with large 

systems of equations. It’s still easier to solve smaller systems by hand, but 

the larger systems almost beg to have matrices used for efficient and accu-

rate solutions.

George Bernard Dantzig
If you’ve ever seen the movie Good Will 
Hunting, then you’ve already had a glimpse into 
the legend that is George Dantzig. The opening 
scene of Good Will Hunting is an altered ver-
sion of what actually happened to Dantzig while 
he was a graduate student at the University of 
California, Berkeley.

As the story goes, Dantzig arrived late to class 
one day and saw that two problems were writ-
ten on the board. He dutifully copied down the 
problems, assuming that they were a homework 
assignment. Dantzig thought that the problems 
were a little more difficult than those usually 
assigned, but he turned them in a few days later.

What Dantzig didn’t know was that the profes-
sor had written down those two problems as 
examples of famous unsolved statistics prob-
lems. Several weeks later, Dantzig’s professor 

excitedly told him that one of the solutions was 
being submitted for publication.

George Dantzig is regarded as one of the 
founders of linear programming, a method 
of optimization and strategy using matrices. 
The applications of linear programming were 
explored during World War II, when military 
supplies and personnel had to be moved effi-
ciently. Linear programming involves systems 
of equations and inequalities and matrices. The 
solutions had to be found, in those early days, 
without the benefit of electronic computers. 
Dantzig devised the simplex method to help find 
solutions to the problems. Nowadays, you find 
the applications of linear programming in the 
scheduling of flight crews for airlines, shipping 
merchandise to retailers, oil refinery planning, 
and more.
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Instituting inverses to solve systems
When a system of equations happens to meet a very strict set of criteria, you 

can use a square matrix and its inverse to solve the system for the single 

solution. Even though it may sound as if you have to jump through too many 

hoops to use this method, don’t discount it out of hand. Many applications 

meet the requirements of having a single solution and also having as many 

equations as there are unknowns. Yes, those are the requirements: one solu-

tion and enough equations for variables.

 To solve a system of n equations with n unknowns using an n × n matrix and 

its inverse, do the following:

 1. Write each of the equations in the system with the variables in the 

same order and the constant on the other side of the equal sign from 

the variables.

 2. Construct a coefficient matrix (a square matrix whose elements are 

the coefficients of the variables).

 3. Write the constant matrix (an n × 1 column matrix) using the con-

stants in the equations.

 4. Find the inverse of the coefficient matrix.

 5. Multiply the inverse of the coefficient matrix times the constant 

matrix.

  The resulting matrix shows the values of the variables in the solution of 

the system.

Here’s an example. (I show the steps using the same numbering as given in 

the instructions.)

Solve the system of equations:

 1. Writing the system of equations with the variables in alphabetical 

order and the constants on the other side of the equal sign, I get
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 2. Constructing a coefficient matrix using 0s for the missing variables, I get

A = 

 3. Writing the constant matrix, I get

B = 

 4. Finding the inverse of the coefficient matrix, I get

  For instructions on how to find an inverse matrix, turn to Chapter 3.

  If the coefficient matrix doesn’t have an inverse, then the system does 

not have a single solution.

 5. Multiplying the inverse of the coefficient matrix times the constant 

matrix, I get

  The resulting matrix has the values of x, y, and z in order from top to 

bottom. So x = –4, y = 2, and z = –1.

Introducing augmented matrices
Not all matrices have inverses. Some square matrices are non-singular. But 

matrices and row operations are still the way to go when solving systems, 

because you deal only with the coefficients (numbers). You don’t need to 

involve the variables until writing out the solution; the matrix’s rectangular 

arrangement keeps the different components in order so that the variables 

are recognizable by their position. Using an augmented matrix and perform-

ing row operations, you reduce the original system of equations to a simpler 
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form. Either you come out with a single solution, or you’re able to write solu-

tions in terms of a parameter — many solutions.

Setting up an augmented matrix
Writing a system of equations as an augmented matrix requires that all the 

variables are in the same order in each equation. You’re going to be record-

ing only the coefficients, so you have to be sure that each number in the 

matrix represents the correct variable.

Unlike the method of multiplying a coefficient matrix by its inverse, as shown 

in the “Instituting inverses to solve systems” section, earlier in this chapter, 

you incorporate the constants into a single, augmented matrix, drawing a 

dotted line down through the matrix to separate the coefficients from the 

constants. Here is a system of equations and its augmented matrix:

Aiming for the echelon form
When a matrix is in the reduced row echelon form, it has the following 

characteristics:

 ✓ If the matrix has any rows whose elements are all 0s, those rows are at 

the bottom of the matrix.

 ✓ Reading from left to right, the first element of a row that is not a 0 is 

always a 1. This first 1 is called the leading 1 of its row.

 ✓ In any row, the leading 1 is always to the right of and below any leading 

1 in a row above.

 ✓ If a column contains a leading 1, then all the entries above and below 

that leading 1 are 0s.

The rules for the reduced row echelon form are pretty strict and have to be 

followed exactly. A not-so-strictly defined form for a matrix is the row echelon 
form (as opposed to reduced row echelon form). The difference between the 

two forms is that the row echelon form doesn’t require 0s above and below 

each leading 1. All the other rules apply, though.
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Matrix R is in reduced row echelon form and matrix E is in row echelon form.

Each echelon form has its place in solving systems of equations and linear 

algebra manipulations. Sometimes you get to choose, and other times you’re 

directed one way or the other.

Creating equivalent matrices
In Chapter 3, you find the three different row operations that can be performed 

on matrices resulting in an equivalent matrix. I use these rules, again, to change 

an augmented matrix to an echelon form. Briefly, those operations are

 ✓ Interchanging two rows

 ✓ Multiplying a row by a nonzero number

 ✓ Adding a multiple of one row to another row

Refer to Chapter 3 for more explanation of the row operations and the nota-

tion employed to indicate their use.

Solving a system of equations using an augmented 
matrix and working toward an echelon form
After writing a system of equations as an augmented matrix, you perform row 

operations until the matrix is in either row echelon form or reduced row ech-

elon form. Taking the extra steps necessary to put the matrix in reduced row 

echelon form allows you to read the solution directly from the matrix without 

further back-solving or algebraic manipulations.

For example, consider the following system of equations and its correspond-

ing augmented matrix:
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To put the augmented matrix in reduced row echelon form, start by multi-

plying the first row by –1:

You need to have all 0s under the leading 1 in the first row. Row 3 already has 

a 0 in that first position, so you only have to deal with the 4 in row 2. Multiply 

row 1 by –4 and add it to row 2 so that the first element in row 2 becomes a 0.

You already have a 1 in the second row, second column, so you don’t have 

to make any adjustments to create a leading 1. But you do need to create 0s 

above and below that 1. So you multiply –1 by row 2 and add it to row 1; then 

do the same to row 3:

You could stop right now. The matrix is in row echelon form. Using this row 

echelon form and back-solving, you first write the last row as the equation z 

= –1. Then back-substitute the value for z into the row above, y – 4z = 6; you 

get y + 4 = 6, or y = 2. Now put the –1 for the z and the 2 for the y into the top 

equation (if there is a y), x + 5z = –9; you get x – 5 = –9, or x = –4.

If, however, you decide to finish what you started and create the reduced 

row echelon form, bring your attention to that last row. Again, a nice thing 

has happened: The element in row 3, column 3, is a 1. You create 0s above 

the 1 by multiplying –5 by row 3 and adding it to row 1, and then multiplying 

4 times row 3 and adding it to row 2.
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You read directly from the last column that x = –4, y = 2, and z = –1.

Writing parametric solutions 
from augmented matrices
A system of equations does not always have a single solution. When the 

system contains an equation that is a linear combination of other equations, 

then the system is dependent and has more than one solution. You recognize 

that the system has more than one solution when the row echelon form has 

one or more rows of 0s.

For example, I found the following system, which has an infinite number of 

solutions. To show that the system has multiple solutions, I write the system 

as an augmented matrix to get started.

 

Now I perform row operations to change the augmented matrix to reduced 

row echelon form.
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I now have an augmented matrix with a row of 0s at the bottom, so I write the 

first two rows as their equivalent equations in x, y, and z. Then I solve for x 

and y in the two equations.

Both x and y are dependent on what z is. So I choose the parameter k to rep-

resent some real number. I let z = k, which makes x = 5k – 2 and y = 4k – 3. 

The solution is also written (5k – 2,4k – 3,k) as an ordered triple. Once a real 

number is selected for k, then a solution is created from the ordered triple. 

For example, if k = 1, then a solution for the system is (3,1,1).
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Part II
Relating Vectors 

and Linear 
Transformations



In this part . . .

Tracking an LIV? Doesn’t everyone have his own favor-

ite Lunar Interplanetary Vehicle? If not, then you’ll be 

happy to keep your feet on the ground with these chap-

ters on linearly independent vectors — and other linear 

launchings.



Chapter 5

Lining Up Linear Combinations
In This Chapter
▶ Combining vectors with linear combinations

▶ Recognizing vectors in a span

▶ Determining sets of vectors to span R2
 
and R3

Vectors are n × 1 matrices that can have various operations performed 

upon them. Two special types of vectors are those for which n = 2 and 

n = 3 — you can draw pictures that serve as graphical representations of the 

vectors to aid you in understanding vector properties. Using both scalar mul-

tiplication and matrix addition, a linear combination uses vectors in a set to 

create a new vector that’s the same dimension as the vectors involved in the 

operations.

The questions arising from creating linear combinations on sets of vectors 

range from how extensive the resulting vectors are to whether a particular 

vector may be produced from a given set of vectors. In this chapter, I answer 

these questions and explore the methods used to answer them.

Defining Linear Combinations of Vectors
A linear equation, such as 4x + 3y + (–5z) + 6w = 7, is made up of products and 

sums. The variables are multiplied by coefficients, and the products are then 

added together. A linear combination of vectors is also the result of products 

and sums. Multipliers are called scalars to signify that scalar multiplication 

is being performed, and the sums of the products result in new vectors that 

have the same dimension as those being multiplied.

Writing vectors as sums of other vectors
A linear combination of vectors is written y = c

1
v

1
 + c

2
v

2
 + c

3
v

3
 + . . . + c

k
v

k
 

where v
1
, v

2
, v

3
, . . ., v

k
 are vectors and c

i
 is a real coefficient called a scalar. 
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Given a set of vectors with the same dimensions, many different linear com-

binations may be formed. And, given a vector, you can determine if it was 

formed from a linear combination of a particular set of vectors.

Here I show you three vectors and a linear combination. Note that the 

column vectors all have the dimension 3 × 1. The operations involved in the 

linear combination are scalar multiplication and vector addition. (Refer to 

Chapter 2 if you want to know more about vector operations.)

Here are the three vectors:

And here’s the linear combination: y = 3v
1
 + 4v

2
 + 2v

3

Now, applying the rule defined by the linear combination,

The final result is another 3 × 1 vector.

Consider, next, the linear combination, y = –4v
1
 – 13v

2
 + 8v

3 
and the vector 

resulting from applying the operations on the vectors v
1
, v

2
, and v

3
.

In this case, the resulting vector has 0s for the first two elements. I was trying 

to come up with a linear combination of the three vectors that makes all the 

elements 0s in the resulting vector, and I couldn’t do it. In Chapters 6 and 7, 

you see how to determine if a result of all 0s is possible and just how grand 

it is to have all 0s for the result. For now, I’m just showing you the processes 

and procedures for working with the combinations.
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Determining whether a vector belongs
When working with a set of vectors, the linear combinations of those vectors 

are numerous. If you have no restrictions on the values of the scalars, then 

you have an infinite number of possibilities for the resulting vectors. What 

you want to determine, though, is whether a particular vector is the result of 

some particular linear combination of a given set of vectors.

For example, if you have the set of vectors

and you want to determine if there’s some way you can produce the vector

as a linear combination of v
1
, v

2
, and v

3
, you investigate the various linear 

combinations that may produce the elements in the vector.

KISS: Keeping it simple, silly
The nicest situation to have occur when looking for an appropriate linear 

combination is when all but one of the scalars is 0, which happens when the 

desired vector is just a multiple of one of the vectors in the set.

For example, what if the vector you want to create with a linear combination 

of a set of vectors is

Using the previous set of vectors, v
1
, v

2
, and v

3
, you see that multiplying –1 

times the vector v
3
 results in your desired vector, so you write the linear 

combination 0v
1
 + 0v

2
 – 1v

3
 to create that vector.
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Wising up for a solution
When a desired vector isn’t a simple multiple of just one of the vectors in the 

set you’re working from, then you resort to another method — solving for the 

individual scalars that produce the vector.

The scalars you seek are the multipliers of the vectors in the set under con-

sideration. Again, using the vectors v
1
, v

2
, and v

3
, you write the equation x

1
v

1
 

+ x
2
v

2
 + x

3
v

3
 = b, where x

i
 is a scalar and b is the target vector.

Multiplying each vector by its respective scalar, you get

Now, to solve for the values of the scalars that make the equation true, 

rewrite the vector equation as a system of linear equations.

The system is solved by creating an augmented matrix where each column of 

the matrix corresponds to one of the vectors in the vector equation.

Now, perform the row operations needed to produce a reduced row echelon 
form (see Chapter 4 for details on these steps):
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The solution of the system of equations is x
1
 = –4, x

2
 = –2, x

3
 = 3. The solutions 

correspond to the scalars needed for the vector equation.

Recognizing when there’s no combination possible
Not every vector you choose is going to turn out to be a linear combination 

of a particular set of vectors. But when you begin the process of trying to 

determine the necessary scalars, you don’t know that a linear combination 
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isn’t possible. You’ll find out that there’s no solution after performing some 

row operations and noting a discrepancy or impossible situation.

For example, consider the following set of vectors and the target vector, b:

You want to solve the vector equation formed by multiplying the vectors in 

the set by scalars and setting them equal to the target vector.

Creating the augmented matrix for the system of equations and solving for 

the scalars, you have:

After performing some row operations, you find that the last row of the 

matrix has 0s and an 8. The corresponding equation is 0x
1
 + 0x

2
 + 0x

3
 = 8, or 

0 + 0 + 0 = 8. The equation makes no sense — it can’t be true. So there’s no 

solution to the system of equations and no set of scalars that provide the 

target vector. The vector b is not one of the linear combinations possible 

from the chosen set of vectors.
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Searching for patterns 
in linear combinations
Many different vectors can be written as linear combinations of a given set of 

vectors. Conversely, you can find a set of vectors to use in writing a particu-

lar target vector.

Finding a vector set for a target vector
For example, if you want to create the vector

you could use the set of vectors

and the linear combination

The vector set and linear combination shown here are in no way unique; 

you can find many different combinations and many different vector sets 

to use in creating the particular vector. Note, though, that my set of vectors 

is somewhat special, because the elements are all either 0 or 1. (You see 

more vectors with those two elements later in this chapter and in Chapters 6 

and 7.)
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Generalizing a pattern and writing a vector set
Sets of vectors can be described by listing all the vectors in the set or by rec-

ognizing and writing a rule for a pattern. When a set of vectors is very large 

or even has an infinite number of members, a pattern and generalized rule is 

preferable to describe all those members, if this is possible.

Consider the following vectors:

One possibility for describing the vectors in this set is with a rule in terms of 

two real numbers, a and b, as shown here:

Two elements, the first and third, determine the values of the other two 

elements.

 This rule is just one possibility for a pattern in the set of vectors. A list of four 

vectors isn’t really all that large. When you have only a few vectors to work 

with, you have to proceed with caution before applying that pattern or rule to 

some specific application.

The rule shows how to construct the vectors using the one vector and its 

elements. An alternative to using the one vector is to use two vectors and a 

linear combination:

So many choices!
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Visualizing linear combinations of vectors
Vectors with dimension 2 × 1 can be represented in a coordinate system as 

points in the plane. The vectors

are graphed in standard form with initial points at the origin, (0,0), and termi-

nal points (2,−1) and (4,3). You see the two vectors and two points in Figure 

5-1. (Refer to Chapter 2 for more on graphing vectors.)

Linear combinations of vectors are represented using parallel lines drawn 

through the multiples of the points representing the vectors. In Figure 5-1, 

you see the scalar multiples of v
1
: −3v

1
, −2v

1
, −v

1
, 2v

1
, and 3v

1
, and multiples 

of v
2
: −v

2
 and 2v

2
. You also see the points representing the linear combina-

tions: −3v
1
−v

2
, −3v

1
+v

2
, 2v

1
−v

2
, and 2v

1
+v

2
.

 

Figure 5-1: 
Scalar mul-

tiples and 
linear 

combina-
tions.
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Getting Your Attention with Span
You may already be familiar with life span, the span of a bridge, wingspan, and 

a span of horses. Now I get to introduce you to the span of a set of vectors. 
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The span of a set of vectors consists of another set of vectors, all with a rela-

tionship to the original set. The span of a vector set is usually infinitely large, 

because you’re dealing with lots of real numbers. But, on the other hand, a 

span can be finite if you choose to limit the range of the scalars being used.

The concept or idea of span gives a structure to the various linear combina-

tions of a set of vectors. The vectors in a set pretty much determine how 

wide or small the scope of the results is.

Describing the span of a set of vectors
Consider a set of vectors {v

1
, v

2
, . . . , v

k
}. The set of all linear combinations 

of this set is called its span. That set of linear combinations of the vectors is 

spanned by the original set of vectors. Each vector in the span{v
1
, v

2
, . . . , v

k
} 

is of the form c
1
v

1
 + c

2
v

2
 + . . . + c

k
v

k
 where c

i
 is a real number scalar.

For example, if you have the set of vectors {v
1
, v

2
, v

3
} where

then span{v
1
, v

2
, v

3
} =

Replacing the scalars with real numbers, you produce new vectors of the 

same dimension. With all the real number possibilities for the scalars, the 

resulting set of vectors is infinite.

Broadening a span as wide as possible
A span of a vector set is the set of all vectors that are produced from linear 

combinations of the original vector set. The most comprehensive or all-

encompassing spans are those that include every possibility for a vector — 

all arrangements of real numbers for elements.
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In R2, the vector set

spans all those 2 × 1 vectors. In R3, the vector set

spans all the 3 × 1 vectors. So, in general, if you want to span all n × 1 vectors, 

your vector set could look like the following, where each member of the set is 

an n × 1 vector:

Narrowing the scope of a span
Now consider the vector set

and the vector
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For what value or values of d (if any) is the vector b in span{v
1
, v

2
}?

If b is in span{v
1
, v

2
}, then you’ll find a linear combination of the vectors 

such that

Rewriting the vector equation as a system of equations, you get

Adding the first and third equations together, you get −c
2
 = 6 + d. Adding 

the second equation to five times the third equation, you get 6c
2
 = 5d − 3. 

Multiplying −c
2
 = 6 + d by −6, you get 6c

2
 = −36 − 6d. You have two equations 

in which one side of the equation is 6c
2
, so set the other sides equal to one 

another to get 5d − 3 = −36 − 6d. Add 6d to each side, and add 3 to each side 

to get 11d = −33, which means that d = −3. So the vector b is in the span of the 

vector set only if the last element is −3.

Showing which vectors belong in a span
A span may be all-encompassing, or it may be very restrictive. To determine 

whether a vector is part of a span, you need to determine which linear com-

bination of the vectors produces that target vector. If you have many vectors 

to check, you may choose to determine the format for all the scalars used in 

the linear combinations.

Determining whether a particular vector belongs in the span
Consider the vector set {v

1
, v

2
, v

3
} where
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You want to determine if the vector

belongs in span{v
1
, v

2
, v

3
}. To do so, you need to determine the solution of 

the vector equation

Using the system of equations

and its corresponding augmented matrix (refer to “Determining whether a 

vector belongs”), the solution is c
1
 = 2, c

2
 = −4, and c

3
 = 1. So you find that a 

linear combination of the vectors does produce the target vector. The vector 

b does belong in the span.

Writing a general format for all scalars used in a span
Solving a system of equations to determine how a vector belongs in a span is 

just fine — unless you have to repeat the process over and over again for a 

large number of vectors. Another option to avoid repeating the process is to 

create a general format for all the vectors in a span.

For example, consider the vector set {v
1
, v

2
, v

3
} where
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Any vector in span{v
1
, v

2
, v

3
} satisfies the equation

where x, y, and z are the elements of a vector in the span.

Using the vectors v
1
, v

2
, v

3
, the corresponding system of equations is

To solve the system of equations for x, y, and z, you start by adding −2 times 

row one to row two to get −2c
1
 + c

3
 = −2x + y. Now add this new equation to 

twice the third equation.

Divide each side by 5 to get

Substituting this value of c
3
 into the original second equation, you get

Then, substituting the values of c
3
 and c

2
 into the original first equation, you 

solve for c
1
 and get
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So any vector in the span has the format

For example, to create the vector

you let x = 4, y = 1, and z = 1 and get

where c
1
 = 3, c

2
 = 2, and c

3
 = −1.

Spanning R2
 and R3

The 2 × 1 vectors, represented by points in the coordinate plane, make up R2. 

And the 3 × 1 vectors, represented by points in space, make up R3. A common 

question in applications of linear algebra is whether a particular set of vec-

tors spans R2
 
or R3.

Seeking sets that span
When a set of vectors spans R2, then you can create any possible point in the 

coordinate plane using linear combinations of that vector set.
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For example, the vectors v
1
 and v

2
 are in the set

and span R2. I show you that the statement is true by writing the linear com-

bination and solving the corresponding system of linear equations.

Add −2 times the second equation to the first equation, and you get

Now multiply the first equation through by −1, and substitute the value of c
2
 

into the second equation.

You get that c
1
 = 2x − 3y and that c

2
 = 2y − x. So any vector can be written as a 

linear combination of the two vectors in the set. If the elements in the target 

vector are x and y, then the linear combination (2x − 3y)v
1
 + (2y − x)v

2
 results 

in that vector.

Here’s an example of a vector set that spans R3:
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Writing the corresponding linear combination and solving for the scalar mul-

tiples, you get c
1
 = x + y − z, c

2
 = y, and c

3
 = z − y.

So, for any vector in R3,

Ferreting out the non-spanning sets
The set of vectors

does not span R2. The non-spanning set may seem more apparent to you 

because one of the vectors is a multiple of the other. Any linear combination 

written with the vectors in the set has only the zero vector for a solution. Linear 

combinations of the vectors just give you multiples of the first vector, so the set 

can’t span R2.

Consider now, the vector set in R3 where v
1
 and v

2
 are

The corresponding linear combination and system of equations is
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Adding −1 times the first equation to the second equation and −3 times the 

first equation to the third equation, you get

The second and third equations are now contradictory. The second says that 

c
2
 = 1/2 (y − x) and the third equation says that c

2
 = z − 3x. Except for a few 

select vectors, the equations don’t work.



Chapter 6

Investigating the Matrix 
Equation Ax = b

In This Chapter
▶ Using matrix multiplication in multiple ways

▶ Defining the product of a matrix and a vector

▶ Solving the matrix-vector equation, when possible

▶ Formulating formulas for multiple solutions

The matrix-vector equation Ax = b incorporates properties and techniques 

from matrix arithmetic and algebra’s systems of equations. The term 

Ax indicates that matrix A and vector x are being multiplied together. To 

simplify matters, the convention is to just write the two symbols next to one 

another without an asterisk (*) to indicate multiplication.

In Chapter 3, you find all sorts of information on matrices — from their char-

acteristics to their operations. In Chapter 4, you see systems of equations 

and how to utilize some of the properties of matrices in their solutions. And 

here, in Chapter 6, you find the vectors, taken from Chapter 3, and I introduce 

you to some of the unique properties associated with vectors — properties 

that lend themselves to solving the equation and its corresponding system.

Joining forces with systems of equations, the matrix equation Ax = b takes 

on a life of its own. In this chapter, everything is all rolled together into one 

happy, (usually) cohesive family of equations and solutions. You find tech-

niques for determining the solutions (when they exist), and you see how to 

write infinite solutions in a symbolically usable expression. By recognizing 

the common characteristics of solutions of Ax = b, you see how to take what 

can be a complicated and messy problem and put it into something workable.
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Working Through Matrix-Vector Products
Matrices have two completely different types of products. When preparing 

to perform multiplication involving matrices, you first take note of why you 

want to multiply them and then decide how.

The simplest multiplication involving matrices is scalar multiplication, where 

each element in the matrix is multiplied by the same multiplier. As simple as 

scalar multiplication may appear, it still plays an important part in solving 

matrix equations and equations involving the products of matrices and vectors.

The second type of multiplication involving matrices is the more complicated 

type. You multiply two matrices together only when they have the correct 

matrix dimensions and correct multiplication order.

 Chapter 3 covers matrix multiplication in great detail, so refer to that material 

if you’re feeling a bit shaky on the topic.

In this chapter, I concentrate on multiplying a matrix times a vector (an n × 1 

matrix). Because of the special characteristics of matrix-vector multiplication, 

I’m able to show you a quicker, easier method for determining the product.

Establishing a link with matrix products
In Chapter 3, you find the techniques needed to multiply two matrices 

together. When you multiply an m × n matrix times an n × p matrix, your 

result is an m × p matrix. Refer to multiplication of matrices in Chapter 3 if 

the previous statement doesn’t seem familiar to you.

Revisiting matrix multiplication
When multiplying the matrix A times the vector x, you still have the same 

multiplication rule applying: The number of columns in matrix A must match 

the number of rows in vector x. And, because a vector is always some n × 1 

matrix, when you multiply a matrix times a vector, you always get another 

vector.

 The product Ax of an m × n matrix and an n × 1 vector is an m × 1 vector. For 

example, consider the matrix B and vector z shown here:
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The product of the 2 × 4 matrix B and the 4 × 1 vector z is a 2 × 1 vector.

Looking at systems
Multiplying a matrix and a vector always results in a vector. The matrix multi-

plication process is actually more quickly and easily performed by rewriting 

the multiplication problem as the sum of scalar multiplications — a linear 

combination, in fact.

If A is an m × n matrix whose columns are designated by a
1
, a

2
, . . . , a

n
 and if 

vector x has n rows, then the multiplication Ax is equivalent to having each 

of the elements in vector x times one of the columns in matrix A:

So, revisiting the earlier multiplication problem, and using the new proce-

dure, multiply Bz by using the columns of B and rows of z,
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 The following properties apply to the products of matrices and vectors. If A is 

an m × n matrix, u and v are n × 1 vectors, and c is a scalar, then:

 ✓ cA = Ac and A(cu) = c(Au). This is the commutative property of scalar 

multiplication.

 ✓ A(u + v) = Au + Av and c(u + v) = cu + cv. This is the distributive prop-

erty of scalar multiplication.

Tying together systems of equations 
and the matrix equation
Consider matrix A with dimension m × n whose columns are a

1
, a

2
, . . . , a

n
 and 

a vector x with n rows. Now throw into the mix another vector, b, that has m 

rows. The multiplication Ax results in an m × 1 matrix. And the equation Ax = 

b has the same solution set as the augmented matrix [a
1
 a

2
 a

3
 . . . a

n
 b].

The matrix equation is written first with A as a matrix of colums a
i
 and then 

with the elements in vector x multiplying the columns of A. When multiplied 

out, you see the results of the scalar multiplication.
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The corresponding augmented matrix is used to solve the system of equa-

tions represented by the Ax = b equation:

I use the augmented matrix as shown in Chapter 4; you can refer to that chapter 

for more on how augmented matrices are used to solve systems of equations.

Now, let me use an augmented matrix to solve the equation Ax = b where:

Writing the augmented matrix:

When the augmented matrix is row-reduced, the values of x
1
, x

2
, and x

3
 are 16, 

7, and −21, respectively. I show you how I got these numbers in the “Singling 

out a single solution” section, later in this chapter.

For now, this is what the solution to the equation Ax = b looks like, with the 

elements of vector x filled in.
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Confirming the Existence 
of a Solution or Solutions

Have you ever looked for something and known that it’s somewhere close, 

but can’t find it. You know it’s there, but you can’t even prove that it really 

exists. Well, I can’t help you find your keys or that receipt or that earring, but 

I can help you find the solution of a matrix-vector equation (or state defini-

tively that it doesn’t really exist)!

The equation Ax = b has a solution only when b is a linear combination of the 

columns of matrix A. That’s the special matrix-vector multiplication I show 

you earlier in “Tying together systems of equations and the matrix equa-

tion.” Also, b is in the span of A when there is a solution to Ax = b. (You don’t 

remember much on the span of a set of vectors? You’ll find that information 

in Chapter 5.)

Singling out a single solution
The equation Ax = b has a single solution when only one vector, x, makes the 

equation into a true statement. To determine whether you have a solution, 

use the tried-and-true method of creating an augmented matrix correspond-

ing to the columns of A and the vector b and then performing row operations. 

For example, given the matrix A and vector b, I find the vector x that solves 

the equation.

You see that the dimension of matrix A is 4 × 4 and the dimension of vector 

b is 4 × 1. When setting up the matrix multiplication, you know that in order 

to have the product of A and vector x result in a 4 × 1 vector, then the dimen-

sion of vector x must also be 4 × 1. (Refer to Chapter 3 and multiplication of 

matrices if you need more information on multiplying and dimensions.)

So the matrix equation for Ax = b is written
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and the augmented matrix is

Now, performing row operations, I change the matrix to reduced echelon form 

so I can determine the solution — what each x
i
 represents.

 1. Multiply the first row by −1 and add it to row two; then multiply the 

first row by −2 and add it to row three.

  Does this −1R
1
 + R

2
 business look like some sort of secret code? No, it 

isn’t a secret. You can find the explanation in Chapter 4.

 2. Multiply row two by 2 and add it to row one; multiply row two by −2 

and add it to row three; and, finally, multiply row two by −2 and add 

it to row four.

 3. Multiply row three by −8 and add it to row one; multiply row three by 

−3 and add it to row two; then multiply row three by −2 and add it to 

row four.
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 4. Multiply row four by −1; multiply the new row four by 17 and add it 

to row one; multiply row four by 7 and add it to row two; and multiply 

row four by −2 and add it to row three.

The numbers in the last column correspond to the single solution for the 

vector x. In the vector x, the elements are x
1
 = 1, x

2
 = 1, x

3
 = 2, x

4
 = −1. The 

equation Ax = b has this one — and only one — solution.

Making way for more than one solution
Many matrix-vector equations have more than one solution. When determin-

ing the solutions, you may try to list all the possible solutions or you may 

just list a rule for quickly determining some of the solutions in the set. When 

using the matrix-vector equation in an application, you usually have certain 

constraints, which limit the scope of the numbers you’re allowed to use for an 

answer. For example, if your application has to do with the length of a build-

ing, you wouldn’t choose any of the solutions that make that length a nega-

tive number.

Solving for the solutions of a specific vector
When vector b has specific numerical values, you don’t always know, 

upfront, if you’ll find one solution, no solution, or many solutions. You use 

the augmented matrix and reduce that matrix to echelon form.

For example, consider the matrix A and vector b in the equation Ax = b.
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Writing the corresponding augmented matrix, you get

Now, doing row reductions, perfom these steps:

 1. Multiply row one by −3 and add it to row two; multiply row one by −4 

and add it to row three.

 2. Divide each element in row two by −11, and divide each element in 

row three by −7.

 3. Multiply row two by −1 and add it to row three.

  The last row in the augmented matrix contains all 0s. Having a row of 0s 

indicates that you have more than one solution for the equation.

 4. Take the reduced form of the matrix and go back to a system of equa-

tions format, with the reduced matrix multiplying vector x and setting 

the product equal to the last column.
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 5. Do the matrix multiplication and write the corresponding system of 

equations. 

 6. Solve the second equation for x
2
, and you get that x

2
 = 1 – x

3
. Replace 

the x
3
 with a parameter, k, and you now have x

2
 = 1 – k. Now solve for 

x
1
 in the first equation, substituting in the equivalences of x

2
 and x

3
.

Carl Friedrich Gauss
One of the most prolific mathematicians of all 
time was German mathematician Carl Friedrich 
Gauss. Gauss lived from 1777 until 1855. He 
made contributions not only to mathematics, 
but also to astronomy, electrostatics, and 
optics. Gauss was a child prodigy — to the 
delight of his parents and, often, to the dismay 
of his teachers. Many legends are attributed to 
Gauss’s precociousness.

One of the more well-known stories of his child-
hood has to do with a tired, harried teacher 
who wanted to have a few minutes of peace 
and quiet. The teacher gave Gauss’s class the 
assignment of finding the sum of the numbers 
from 1 through 100, thinking that it would take 
even the brightest child at least half an hour to 
complete the task. To the teacher’s chagrin, 
little Carl Friedrich came up with the answer in 
minutes. Gauss had the answer and had stum-
bled on the basics to the formula for finding the 
sum of n integers.

Gauss’s father wanted Carl Friedrich to become 
a mason and wasn’t all that supportive of 
Gauss’s advanced schooling. But, with the help 
of his mother and a family friend, Gauss was 
able to attend the university.

Gauss is credited with developing the technique 
Gaussian elimination, a method or procedure for 
using elementary row operations on augmented 
matrices to solve systems of equations.

After Gauss died, his brain was preserved and 
studied. His brain was found to weigh 1,492 
grams (an average male brain weighs between 
1,300 and 1,400 grams), and the cerebral area 
measured 219,588 square millimeters (as com-
pared to about 150,000 square millimeters for an 
average male). The brain also contained highly 
developed convolutions. All these measure-
ments were said to confirm Gauss’s genius.
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  The vector b is now written:

  where k is any real number.

  For example, if you let k = 2, you have

Going more general with infinite solutions
When your matrix-vector equation Ax = b involves the vector b with specific 

elements, you may have more than one solution. What I show you here is the 

situation where matrix A has specific values, and vector b varies. The vector 

b is different every time you fill in random numbers. Then, after you choose 

numbers to fill in for the elements in b, the solutions in vector x correspond 

to those numbers.

For example, consider matrix A and some random matrix b.

The augmented matrix for Ax = b is

Performing row operations to produce an echelon form, follow these steps:

 1. Multiply row one by −1; then multiply row one by −3 and add it to row 

two; finally, multiply row one by −5 and add it to row 3.
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 2. Multiply row two by −2 and add it to row three.

 3. Divide each term in row two by 12, and divide each term in row three 

by 5.

 4. Multiply row two by 4 and add it to row one.

 5. Multiply row three by 2/3 and add it to row one; then multiply row 

three by −1/3 and add it to row two.
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The solution for vector x is completely determined by the numbers you 

choose for vector b. Once you pick some values for vector b, you also have 

the solution vector x. You find the elements of x letting

To demonstrate how this works, I’ll first pick some convenient values for 

vector b. By convenient, I mean that the elements will change the fractions in 

the formulas to integers. So, if

then

and the matrix-vector equation reads

But, the beauty of this matrix-vector equation is that any real numbers can 

be used for elements in vector b. You can even use such “inconvenient” num-

bers as b
1
 = 1, b

2
 = 2, and b

3
 = −3 to get



118 Part II: Relating Vectors and Linear Transformations 

giving you the equation

Okay, I call this “inconvenient,” meaning that the solutions don’t come out to 

be nice integers. You may not feel quite as “inconvenienced,” so you can call 

it whatever you want.

Getting more selective with a few solutions
Now, if you’re willing and able to be flexible with the entries in vector b, you 

can create a specialized solution to the matrix-vector equation Ax = b.

Let matrix A and vector b have the following values:

Write the augmented matrix and go through the row reductions:

The corresponding equation for the last row of the matrix reads 0x
1
 + 0x

2
 + 

0x
3
 = −2b

1
 − b

2
 + b

3
. The equation is not equal to 0 for very many choices of b

1
, 

b
2
, and b

3
. For example, if you choose to let vector b have values b

1
 = 1, 
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b
2
 = −1, and b

3
 = 1, then you can substitute in those values and finish working 

on the augmented matrix. Note that I randomly chose numbers that made 

the value of −2b
1
 − b

2
 + b

3 
come out equal to 0. The three entries in the last 

column become −b
1
 = −1, 5b

1
 + b

2
 = 5(1) + (−1) = 4, and −2b

1
 − b

2
 + b

3
 = −2(1) − 

(−1) + 1 = 0. Using the numbers for the last column and the original matrix A, I 

now perform row operations on the augmented matrix.

The equations corresponding to the top two lines in the matrix read x
1
 + 18/7, 

x
3
 = 1/7 , and x

2
 + 23/7 x

3
 = 4/7. Choosing k as a parameter to replace x

3
, then the 

vector x for this particular situation is

Now, letting k = 2 (I just chose the 2 at random, trying to end up with integers 

for the elements), you get

and the matrix-vector equation reads
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 Even though many, many solutions are possible for this matrix equation, 

remember that the solutions are very carefully constructed after choosing 

numbers to represent the elements in b.

Getting nowhere because 
there’s no solution
Sometimes, a perfectly nice, harmless-looking equation doesn’t behave at 

all. You look for a solution vector, and you find that there’s none to be had. 

Solving a matrix-vector equation seems like a simple enough situation: Just 

find some elements of a vector to multiply times a matrix so that you have a 

true statement. You’re not fussy about your answer. You’d be satisfied with 

negative numbers or fractions or both. But you don’t always get your wish.

Trying to find numbers to make it work
For example, let matrix A and vector b assume the following roles:

Then use the method of an augmented matrix and row operations:
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Everything was going along just wonderfully until the last step in the row 

reductions. The last row in the matrix has three 0s and then a fraction. 

Translating this into an equation, you have 0x
1
 + 0x

2
 + 0x

3
 = 1/2. The statement 

is impossible. When you multiply by 0, you always get a 0, not some other 

number. So the matrix-vector equation has no solution.

Expanding your search in hopes of a solution
Consider the matrix C and vector d.

Determining if the unknowns a and b have any values that make the equation 

Cx = d a true statement, you use the same method of writing an augmented 

matrix. Writing the augmented matrix and using row operations,

the last row has zeros and the fractional expression. The value of

must be equal to 0. So, for instance, if you let a = 2 and b = 1 (aiming for a 

result of 0), then the elements in the last column are
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So the equation Cx = d can be written

As long as a and b are suitably chosen so as to create a 0 in the last element 

of the third row, then you’ll have a solution. The only time a solution is not 
possible is if you choose a = −3. The sum in the denominator must not be 

equal to 0, so a cannot be −3.



Chapter 7

Homing In on Homogeneous 
Systems and Linear Independence

In This Chapter
▶ Working through homogeneous systems of equations

▶ Solving for nontrivial solutions of homogeneous systems

▶ Investigating linear independence

▶ Breaching the subject of basis

▶ Extending basis to polynomials and matrices

▶ Delving into dimension based on basis

Solving matrix-vector equations takes on a new flavor in this chapter. You 

find 0s set equal to sums of linear terms instead of nonzero numbers. 

Homogeneous systems of equations are set equal to 0, and then you try to 

find nonzero solutions — an interesting challenge.

Also in this chapter, I tie linear independence with span to produce a whole 

new topic called basis. Old, familiar techniques are used to investigate the 

new ideas and rules.

Seeking Solutions of Homogeneous 
Systems

A system of linear equations is said to be homogeneous if it is of the form:
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where each x
i
 is a variable and each a

ij
 is a real-number coefficient.

What’s special about a homogeneous system of linear equations is that each 

sum of coefficient-variable multiples is set equal to 0. If you create an m × n 

matrix of the coefficients of the variables, x
i 
, and call it A, then you can write 

the homogeneous system of equations as a corresponding matrix-vector 

equation Ax = 0. The x represents the variable vector, and the 0 represents 

the m × 1 zero vector. For more information on matrix-vector equations in the 

form Ax = b, you should refer to Chapter 6.

Unlike a general system of linear equations, a homogeneous system of linear 

equations always has at least one solution — a solution is guaranteed. The 

guaranteed solution occurs when you let each variable be equal to 0. The 

solution where everything is 0 is called the trivial solution. The trivial solution 

has each element in the vector x equal to 0. So this isn’t a very exciting solu-

tion; you might say that there’s nothing to it. (Sorry. Couldn’t help myself.) 

What’s more interesting about a homogeneous system of equations are the 

nontrivial solutions — if there are any.

Determining the difference between 
trivial and nontrivial solutions
A system of linear equations, in general, may have one solution, many solu-

tions, or no solution at all. For a system of linear equations to have exactly 

one solution, the number of variables cannot exceed the number of equa-

tions. But just following the guideline of having fewer variables than equa-

tions doesn’t guarantee a single solution (or any solution at all) — it’s just a 

requirement for the single solution to happen.

A system of linear equations may have more than one solution. Many solu-

tions occur when the number of equations is less than the number of 

variables. To identify the solutions, you assign one of the variables to be a 

parameter (some real number) and determine the values of the other vari-

ables based on formulas developed from the relationships established in the 

equations.

In the case of a homogeneous system of equations, you always have at least 

one solution. The guaranteed solution is the trivial solution in which every 

variable is equal to 0. If a homogeneous system has a nontrivial solution, then 

it must meet a particular requirement involving the number of equations and 

number of variables in the system.

 If a homogeneous system of linear equations has fewer equations than it has 

unknowns, then it has a nontrivial solution. Further, a homogeneous system of 

linear equations has a nontrivial solution if and only if the system has at least 

one free variable. A free variable (also called a parameter) is a variable that 
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can be randomly assigned some numerical value. The other variables are then 

related to the free variable through some algebraic rules.

Trivializing the situation with a trivial system
The homogeneous system of equations shown next has only a trivial solution — 

no nontrivial solutions.

If you multiply the second equation times 2 and add it to the first equation, 

you get 11x = 0, which gives you x = 0. Substituting x = 0 back into either 

equation, you get y = 0. When the variables are equal to 0, the solution is 

considered trivial.

It isn’t always quite this easy to be able to tell if a system has only a trivial 

solution. In the “Formulating the form for a solution” section, later, I show 

you how to go through the steps to determine whether you have more than 

just a trivial solution.

Taking the trivial and adding some more solutions
The next system of equations has nontrivial solutions. Even though, at first 

glance, you see three equations and three unknowns and each equation is set 

equal to 0, the system does meet the requirement that there be fewer equa-

tions than unknowns. The requirement is met because one of the equations 

was actually created by adding a multiple of one of the other equations to the 

third equation. In the next section, I show you how to determine when one 

equation is a linear combination of two others — resulting in one less equa-

tion than in the original system.

So, back to a system of equations:

The variable x
3
 is a free variable. And, letting x

3
 = k, x

1
 = −k, and x

2
 = 2k, you 

can solve for all the solutions. How did I know this? Just trust me for now — I 

just want to show you how the nontrivial solutions work. (I show you how to 

find these values in the next section.)

For example, to find one of the nontrivial solutions using the parameter and 

formulas determined from the equations, you could pick k = 3, then x
3
 = 3, 

x
1
 = −3, and x

2
 = 6. Substituting these values into the original system of equa-

tions, you get
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You have an infinite number of solutions possible. Choose any new value for 

k, and you get a new set of numbers. You could even let k = 0.

Formulating the form for a solution
Now I get down to business and show you how to make the determinations 

regarding trivial and nontrivial solutions. You can tell whether a system of 

homogeneous equations has only a trivial solution or if it indeed has non-

trivial solutions. You can accomplish the task by observation (in the case 

of small, simple systems) or by changing the system to an echelon form for 

more complicated systems.

Traveling the road to the trivial
The following system of linear equations has only a trivial solution. Maybe 

you’re a bit suspicious of there being only the one solution, because you 

have as many equations as there are variables. But the variable-equal-to-

equation situation isn’t enough to definitely make that assessment. You need 

to show that none of the equations can be eliminated because it’s the linear 

combination of the others.

So, to determine if your guess is right, you take the system of equations and 

write its corresponding augmented matrix:

Now, performing the row operation of multiplying the first row by −1 and 

adding it to row three to create a new row three, you get a matrix where the 

last row is written as 2x
3
 = 0 for its corresponding equation.
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Dividing by 2, you get x
3
 = 0. Substituting that 0 back into the second original 

equation, you get that x
2
 also is equal to 0. And back-substituting into the 

first or third equation gives you 0 for x
1
, too. The clue to the trivial solution in 

this case was the fact that the last row of the matrix had all but one 0. When 

you have all 0s in a row, you usually have a nontrivial solution (if the elimina-

tion of the row creates fewer equations than variables).

Joining in the journey to the nontrivial
When a homogeneous system of linear equations has nontrivial solutions, 

you usually have an infinite number of choices of numbers to satisfy the 

system. Of course, you can’t just pick any numbers, willy-nilly. You make 

a choice for the first number, and then the others fall in line behind that 

choice. You find the secondary numbers using rules involving algebraic 

expressions.

For example, consider the next system of four linear equations with four 

unknowns. You can’t have nontrivial solutions unless you have fewer inde-

pendent equations (where none is a linear combination of the others) than 

unknowns, so you turn to an augmented matrix, row operations, and chang-

ing the matrix to echelon form. First, the system of equations:

And the corresponding augmented matrix:

Now, performing row operations, I change the matrix to reduced row echelon 

form. (Need a refresher on the row operations notation? Turn to Chapter 3.) 

Notice that, in the third step, the last row changes to all 0s, meaning that it 

was a linear combination of the other equations. The number of equations 

reduces to three, so nontrivial solutions are to be found.
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Writing the corresponding equations for the reduced echelon form, the top 

row corresponds to x
1
 − 7x

4
 = 0, the second row corresponds to x

2
 + 9x

4
 = 0, 

and the third row corresponds to x
3
 − 3x

4
 = 0. Letting x

4
 = k, the other vari-

ables are some multiple of k: x
1
 = 7k, x

2
 = −9k, and x

3
 = 3k. So, if I let k = −2, for 

instance, then x
1
 = −14, x

2
 = 18, x

3
 = −6, and x

4
 = −2. Here’s how the particular 

solution works in the system of equations.

Delving Into Linear Independence
Independence means different things to different people. My mother didn’t 

want to give up her car and lose her independence. Every year, the United 

States celebrates Independence Day. But if you’re a mathematician, you 

have a completely different take on independence. The word independence, 
in math-speak, often has to do with a set of vectors and the relationship 

between the vectors in that set.
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A collection of vectors is either linearly independent or linearly dependent.

 The vectors {v
1
, v

2
, . . ., v

n
} are linearly independent if the equation involving 

linear combinations, a
1
v

1
 + a

2
v

2
 + . . . + a

n
v

n
 = 0, is true only when the scalars 

(a
i
) are all equal to 0. The vectors are linearly dependent if the equation has a 

solution when at least one of the scalars is not equal to 0.

The description of linear independence is another way of talking about 

homogeneous systems of linear equations. Instead of discussing the 

algebraic equations and the corresponding augmented matrix, the discus-

sion now focuses on vectors and vector equations. True, you still use an 

augmented matrix in your investigations, but the matrix is now created from 

the vectors. So, looking from the perspective of the homogeneous system of 

equations, you have linear independence if there’s only the trivial solution, 

and linear dependence if scalars, not all 0, exist to give a result of 0 in the 

vector equation.

Testing for dependence or independence
For example, consider the following set of vectors and test whether the vec-

tors in the set are linearly independent or linearly dependent.

To test under what circumstances the equation a
1
v

1
 + a

2
v

2
 + a

3
v

3
 = 0, write 

out the equation with the vectors.

Then write an augmented matrix with the vectors as columns, and perform 

row reductions.
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The bottom row has all 0s, so you know that you have nontrivial solutions 

for the system of equations. (If needed, refer to “Joining in the journey to the 

nontrivial” for information on this revelation.) The set of vectors is linearly 

dependent. But you have many instances in which a linear combination of the 

vectors equals 0 when the vectors themselves are not 0.

I demonstrate the fact that you have more than just the trivial solution by 

going to the reduced form of the matrix, rewriting the vector equation.

 a
1
 + 1/2 a

3
 = 0 and a

2
 + 5/8 a

3
 = 0
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Letting a
3
 = k, I also have that a

2
 = −5/8 k and a

1
 = −1/2 k. So the original vector 

equation reads

For example, if you let k = 8, you’d have

One requirement for linear dependence is that you have more than just the 

trivial solution for the related system of equations. The nontrivial solutions 

occur when you have fewer equations than variables. So, in this next exam-

ple, I’ve tried to create the situation of more equations than variables. So, 

starting with just three vectors, I have more equations than variables.

Here’s the vector set I’m considering:

To check for linear independence, I write the vector equation and corre-

sponding augmented vector.
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Performing row operations to reduce the matrix to echelon form, I get:

The only solution occurs when all the scalars are 0: a
1
 = a

2
 = a

3
 = 0, so the 

vectors are linearly independent.

Characterizing linearly independent 
vector sets
You always have the tried-and-true method of examining the relationships of 

vectors in a set using an augmented matrix. When in doubt, go to the matrix 

form. But, if you’re wise to some more obvious characteristics of the vector 

set you’re considering, you may save yourself some time by ferreting out the 

independent from the dependent sets without going to all the work. You’d 

like to make a decision with just a simple inspection of the set of vectors, if 

possible. When applying the following guidelines, you always assume that 

the dimension of each vector in the set is the same. In other words, you don’t 

have a 2 × 1 vector and a 3 × 1 vector in the same set.
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Wondering when a set has only one vector
A set, in mathematics, is a collection of objects. A set can have any number of 

elements or objects, so a set may also contain just one element. And, yes, you 

can classify a set with one element as independent or dependent.

 A set containing only one vector is linearly independent if that one vector is 

not the zero vector.

So, of the four sets shown next, just set D is dependent; the rest are all 

independent.

Doubling your pleasure with two vectors
A set containing two vectors may be linearly independent or dependent. If 

you’re good with your multiplication tables, then you’ll be a whiz at deter-

mining linear independence of sets of two vectors.

 A set containing two vectors is linearly independent as long as one of the vec-

tors is not a multiple of the other vector.

Here are two sets containing two vectors. Set E is linearly independent. Set F 

is linearly dependent, because each element in the second vector is half that 

of the corresponding element in the first vector.

Three’s a crowd and four’s even more
A set containing vectors contains all vectors with the same dimension. And 

that dimension comes into play when making a quick observation about 

linear dependence or independence.

 A set containing n × 1 vectors has linearly dependent vectors if the number of 

vectors in the set is greater than n.
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So, no matter how hopeful you may be that this next set of vectors is linearly 

independent, it just can’t be. The vectors are all 4 × 1,and I have five vectors 

in the set.

After making up this really awful example of vectors — just arbitrarily putting 

the number 1 and a bunch of prime numbers in for the elements — I began 

to wonder if I could demonstrate to you that the set really is linearly depen-

dent, that one of the vectors is a linear combination of the others. So, without 

showing you all the gory details (feel free, of course, to check my work), the 

reduced echelon form of the augmented matrix I used is

The last vector is a linear combination of the first four vectors. Using the 

values in the last column of the echelon form as multipliers, you see the 

linear combination that creates the final vector.

The numbers aren’t pretty, but, then, I never intended to demonstrate the 

property with this set of vectors. It’s nice to know that the principle holds 

up — pretty or not.

Zeroing in on linear dependence
Having the zero vector as the only vector in a set is clearly grounds for your 

having linear dependence, but what about introducing the zero vector into an 

otherwise perfectly nice set of nonzero vectors?
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 A set containing the zero vector is always linearly dependent.

The best and quickest way of convincing you that the zero vector is the 

spoiler is to say that the zero vector is a multiple of any other vector in the 

set — it’s another vector times the scalar 0.

Reducing the number of vectors in a set
If you already have a linearly independent set of vectors, what happens if you 

remove one of the vectors from the set? Is the new, reduced set also linearly 

independent, or have you upset the plan?

 If vectors are linearly independent, then removing an arbitrary vector, v
i 
, does 

not affect the linear independence.

Unifying the situation with unit vectors
A unit vector has one element that’s a 1, while the rest of the elements are 0s. 

For example, the five unit vectors with dimension 5 × 1 are

Why are unit vectors special when considering linear independence?

 If the set of vectors {v
1
, v

2
, . . ., v

n
} contains all distinct (different) unit vectors, 

then that set has linear independence.

Connecting Everything to Basis
In Chapter 13, you find material on a mathematical structure called a vector 
space. What’s a vector space, you say? One smart-alecky answer is that a 

vector space is a place where vectors orbit — and that answer isn’t all that 

far from the truth. In this chapter, I just deal with the vectors that belong in 

a vector space. In Chapter 13, you find the other important processes and 

properties needed to establish a vector space.



136 Part II: Relating Vectors and Linear Transformations 

Getting to first base with the 
basis of a vector space
Earlier in this chapter, in “Three’s a crowd and four’s even more,” I tell you 

that a set of vectors can’t be linearly independent if you have more vectors 

than you have rows in each vector. When you have a set of linearly inde-

pendent vectors, you sort of have a core group of vectors from which other 

vectors are derived using linear combinations. But, when looking at a set of 

vectors, which are the core vectors and which are the ones created from the 

core? Is there a rhyme or reason? The answers to these questions have to do 

with basis.

A set of vectors {v
1
, v

2
, . . ., v

n
} is said to form a basis for a vector space if 

both of the following are true:

 ✓ The vectors v
1
, v

2
, . . ., v

n
 span the vector space.

 ✓ The vectors v
1
, v

2
, . . ., v

n
 are linearly independent.

You find information on linear independence earlier in this chapter. You find 

a complete discussion of the span of a set of vectors in Chapter 5. But, to 

put span in just a few words for now: A vector v is in the span of a set of vec-

tors, S, if v is the result of a linear combination of the vectors in S. So the con-

cept basis puts together two other properties or concepts: span and linear 

independence.

Broadening your horizons with a natural basis
The broadest example of a basis for a set involves unit vectors. The 3 × 1 unit 

vectors form a basis for all the possible vectors in R3.

The unit vectors are linearly independent, and you can find a linear combi-

nation made up of the unit vectors to create any vector in R3. For example, 

if you wanted to demonstrate the linear combination of the unit vectors 

that produce the special vector with the date commemorating the date that 

Apollo 11 landed on the moon, then you’d use the following:
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So the 3 × 1 unit vectors are a basis for all the possible 3 × 1 vectors. When 

the unit vectors are used as a basis for a vector space, you refer to this as the 

natural basis or standard basis.

Alternating your perspective with an alternate basis
The simplest, most natural basis for all the 3 × 1 vectors is the set of the three 

unit vectors. But the unit vectors are not the only possible set of vectors 

used to create all other 3 × 1 vectors. For example, the set of vectors shown 

next is a basis for all the 3 × 1 vectors (they span R3):

Using the set shown here, you can write any possible 3 × 1 vector as a linear 

combination of the vectors in the set. In fact, I have a formula for determining 

which scalar multipliers in the linear combination correspond to a random 

vector. If you have some vector

use the linear combination

to create the vector where

So, to create the vector representing the landing on the moon by the Apollo 

11 crew, use the setup for the linear combination, substitute the target num-

bers into the formulas for the scalars, and check by multiplying and adding.
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I’m sure that you’re wondering where in the world I got the lovely formulas 

for the scalars in the linear combination. I show you the technique in the 

“Determining basis by spanning out in a search for span” section. For now, I 

just wanted to demonstrate that it’s possible to have more than one basis for 

a particular vector space.

Charting out the course 
for determining a basis
A set of vectors B is a basis for another set of vectors V if the vectors in B 

have linear independence and if the vectors in B span V. So, if you’re consid-

ering some vectors as a basis, you have two things to check: linear indepen-

dence and span. I cover linear independence earlier in this chapter and span 

in Chapter 5, so I now concentrate on just distinguishing the bases that work 

(the plural of basis is bases) from those that don’t qualify.

Determining basis by spanning out in a search for span
A set of vectors may be rather diminutive or immensely large. When you’re 

trying to create all the vectors of a particular size, then you identify all those 

vectors using the notation Rn, where the n refers to the number of rows in 

the vectors. I show you some more manageable vector sets, for starters, and 

expand my horizons to the infinitely large.
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For example, consider the eight vectors shown here and how I find a basis 

the vectors.

The vectors are clearly not linearly independent, because you see more vec-

tors than there are rows. (I show you this earlier in “Three’s a crowd and 

four’s even more.”)

I want to find a basis for the span of the eight vectors. The set of unit vectors is a 

natural, but can I get away with fewer than three vectors for the particular basis? 

I have a procedure to determine just what might constitute a basis for a span.

 If you have vectors v
1
, v

2
, . . ., v

n
, to find vectors which form a basis for the 

span of the given vectors, you:

 1. Form the linear combination a
1
v

1
 + a

2
v

2
 + . . . + a

n
v

n
 = 0, where each a

i
 

is a real number.

 2. Construct the corresponding augmented matrix.

 3. Transform the matrix to reduced row echelon form.

 4. Identify the vectors in the original matrix corresponding to columns 

in the reduced matrix that contain leading 1s (the first nonzero ele-

ment in the row is a 1).

So, using the eight vectors as a demonstration, I write the augmented matrix 

and perform row reductions.
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The first two columns in the reduced echelon form have the leading 1s. The 

first two columns correspond to the first two vectors in the vector set. So a 

basis for the eight vectors is a set containing the first two vectors:

But, wait a minute! What if you had written the vectors in a different order? 

What does that do to the basis? Consider the same vectors in a different 

order.

Now I write the augmented matrix and perform row operations.
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Again, the first two columns of the reduced matrix have leading 1s. So the 

first two vectors in the new listing can also be a basis for the span of vectors.

Assigning a basis to a list with a rule
Rather than list all the vectors in a particular set — if that’s at all possible — 

you often can describe the vectors in a set with a rule. For example, you may 

have a set of 3 × 1 vectors in which the first and second elements are ran-

domly chosen and the third element is twice the first element minus three 

times the second element. You write the rule

Now you want the basis for some vectors, even though you don’t have a 

complete listing. Instead, write an expression in which the rule shown in the 

vector is the sum of two scalar multiples.

The two vectors in the linear combination are linearly independent, because 

neither is a multiple of the other. The vectors with the specifications can all 

be written as linear combinations of the two vectors. So the basis of the vec-

tors is written with the rule

Extending basis to matrices 
and polynomials
The basis of a set of n × 1 vectors meets requirements of linear independence 

and span. The basis must span the set — you must be able to construct linear 

combinations that result in all the vectors — and the vectors in the basis 

must be linearly independent. In this section, I explain how basis applies to 

matrices, in general, and even to polynomials.
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Moving matrices into the arena
When dealing with span and linear independence in n × 1 vectors, the vectors 

under consideration must all have the same number of rows. Likewise, matri-

ces in a basis must all have the same dimension.

For example, consider the 3 × 2 matrices shown here:

The span of the matrices consists of all the linear combinations of the form

So all 3 × 2 matrices resulting from the linear combination of the scalars and 

matrices is in the span of the matrices. To determine if the four matrices 

form a basis for all the matrices in the span, you need to know if the matrices 

are linearly independent. In the case of matrices, you want to determine if 

there’s more than just the trivial solution when setting the linear combina-

tion of matrices equal to the zero matrix.

The linear equations arising out of the matrix equation are a
1
 = 0, a

2
 = 0, a

3
 = 0, 

a
4
 = 0, and a

1
 + a

3
 = 0. The only solution to this system of equations is the 

trivial solution, in which each a
i
 = 0. So the matrices are linearly independent, 

and the set S is the basis of the set of all matrices fitting the prescribed format.

Pulling in polynomials
When dealing with n × 1 vectors, you find R2, R3, R4, and so on to represent 

all the vectors possible where n = 2, n = 3, and n = 4, respectively. Now I 

introduce P2, P3, P4, and so on to represent second-degree polynomials, third-

degree polynomials, fourth-degree polynomials, and so on, respectively.
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 A polynomial is the sum of variables and their coefficients where the variables 

are raised to whole-number powers. The general format for a polynomial is 

a
n
x n + a

n
-1x n–1 + . . . + a

2 
x2 + a

1
x1 + a

0
; the degree of the polynomial is which-

ever is the highest power of any variable.

The terms in the set {x2, x, 1} are a span of P2, because all second-degree 

polynomials are the result of some linear combination a
2
x2 + a

1
x + a

0
(1). The 

elements in the set are linearly independent, because a
2
x2 + a

1
x + a

0
(1) = 0 is 

true only in the case of the trivial solution where each coefficient is 0. So the 

elements in the set form a basis for P2.

Now consider a certain basis for P3. Let set Q = {x3 + 3, 2x2 − x, x + 1, 2} and 

determine if Q spans P3 and if the elements in Q are linearly independent.

Writing the linear combination a
1
(x3 + 3) + a

2
(2x2 − x) + a

3
(x + 1) + 2a

4
, the 

expression simplifies to a
1
x3 + 2a

2
x2 + (−a

2
 + a

3
)x + (3a

1
 + a

3
 + 2a

4
). Now, letting 

a general third-degree polynomial be represented by ax3 + bx2 + cx + d, I set up 

a system of equations matching the scalar multiples with the coefficients so 

that I can solve for each a
i
 in terms of the coefficients in the polynomial.

Solving for the values of each a
i 
,

The set Q spans a third-degree polynomial when the multipliers assume the 

values determined by the coefficients and constants in the polynomials.

For example, to determine the multipliers of the terms in Q needed to write 

the polynomial x3 + 4x2 − 5x + 3, you let a = 1, b = 4, c = −5, and d = 3. The 

linear combination becomes
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And, finally, to check for linear independence, determine if you have more 

than just the trivial solution. Solve the system of equations involving the mul-

tipliers in which the linear combination is set equal to 0.

The multipliers a
1
 and a

2
 are equal to 0. Substituting 0 for a

2
 in the third 

equation, you get a
3
 = 0. And substituting 0 for a

1
 and a

3
 in the fourth equa-

tion, you have a
4
 = 0. Only the trivial solution exists, so the elements are 

linearly independent, and Q is a basis for P3.

Finding the dimension based on basis
The dimension of a matrix or vector is tied to the number of rows and columns 

in that matrix or vector. The dimension of a vector space (see Chapter 13), is 

the number of vectors in the basis of the vector space. I discuss dimension 

here, to tie the concept to the overall picture of basis in this chapter.

In “Determining basis by spanning out in a search for span,” earlier in this 

chapter, I show you that it’s possible to have more than one basis for a 

Legendre
Adrien-Marie Legendre was a French math-
ematician, living in the late 1700s through the 
early 1800s. He made significant contributions 
to several areas of mathematics, statistics, and 
physics. Getting his feet wet with the trajecto-
ries of cannonballs, Legendre then moved on to 
various challenges in mathematics. When you 
look up at the moon, you may even recognize the 
Legendre crater, named for this mathematician.

Legendre made some good starts, produc-
ing mathematics that were later completed or 
proven by others. But, on his own, he is credited 
with developing the least squares method used 

in fitting lines and curves to data sets. Also, 
Legendre worked with polynomials, beginning 
with discoveries involving the roots of polyno-
mials and culminating with establishing struc-
tures called Legendre polynomials, which are 
found in applications of mathematics to physics 
and engineering.

Legendre took a hit starting at the fall of the 
Bastille in 1789 and continuing during the 
French Revolution — losing all his money. He 
continued to work in mathematics and stayed 
clear of any political activism during the revolu-
tion, producing significant contributions.
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particular span — there’s more than one way to create a set of vectors from 

a smaller set. But no matter how many bases a span may have, it’s always the 

same number of vectors in the basis. Look at the following two sets of vectors, 

F and T:

So if set F is a basis for R4 and T is a basis for R2, then the span of F has 

dimension 4, because it contains four vectors, and T has dimension 2, 

because this basis contains two vectors.

Consider the next situation, where you’re given a set of vectors, V, that spans 

another set of vectors, A. You want to find the basis for V, which will help in 

determining more about set A.

To find the basis, write the vectors in V as an augmented matrix, and go 

through row reductions.

In reduced echelon form, the matrix has leading 1s in the first and third col-

umns, corresponding to the first and third vectors in V. So the basis is

and the dimension is 2.
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The set V contains five vectors, but what can be said about the set of 

vectors — all the vectors — that are in the span of the basis? Perhaps you 

want to be able to extend your set of vectors to more than five. Write the 

linear combinations of the vectors in the basis and the corresponding 

equations.

Solving for a
1
 and a

2
, you get

Because the choices for x, y, and z have no limitations, you can create any 3 × 

1 vector. You have a basis for R3.



Chapter 8

Making Changes with Linear 
Transformations

In This Chapter
▶ Describing and investigating linear transformations

▶ Perusing the properties associated with linear transformations

▶ Interpreting linear transformations as rotations, reflections, and translations

▶ Saluting the kernel and scoping out the range of a linear transformation

If you’re old enough (or young enough at heart), you remember the 

Transformers toys — and all the glitz that went with that fad. Little did 

you know (if you were a Transformers fan) that you were being set up for a 

fairly serious mathematical subject. Some transformations found in geometry 

are performed by moving objects around systematically and not changing their 

shape or size. Other transformations make more dramatic changes to geomet-

ric figures. Linear transformations even incorporate some of the geometric 

transformational processes. But linear transformations in this chapter have 

some restrictions, as well as opening up many more mathematical possibilities.

In this chapter, I describe what linear transformations are. Then I take you 

through some examples of linear transformations. I show you many of the 

operational properties that accompany linear transformations. And, finally, I 

describe the kernel and range of a linear transformation — two concepts that 

are very different but tied together by the transformation operator.

Formulating Linear Transformations
Linear transformations are very specific types of processes in mathematics. 

They often involve mathematical structures such as vectors and matrices; 

the transformations also incorporate mathematical operations. Some of the 

operations used by linear transformations are your everyday addition and 

multiplication; others are specific to the type of mathematical structure that 

the operation is being performed upon.
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In this section, I lay out the groundwork of what constitutes a linear trans-

formation. In later sections, I show you examples of different types of linear 

transformations — even drawing pictures where appropriate.

Delineating linear transformation lingo
In mathematics, a transformation is an operation, function, or mapping in 

which one set of elements is transformed into another set of elements. For 

example, the function f(x) = 2x takes any number in the set of whole numbers 

and transforms it to an even number (if it wasn’t even already). The absolute 

value function, f(x) = |x| takes any number and transforms it to a non-nega-

tive number, if the number wasn’t non-negative already. And the trigonomet-

ric functions are truly amazing. The trig functions, such as sin x, take angle 

measures (in degrees or radians) and transform them into real numbers.

 A linear transformation is a particular type of transformation in which one set 

of vectors is transformed into another vector set using some linear operator. 
Also part of the definition of a linear transformation is that the sets and opera-

tor are bound by the following two properties:

 ✓ Performing the transformation on the sum of any two vectors in the set 

has the same result as performing the transformation on the vectors 

independently and then adding the resulting vectors together.

 ✓ Performing the transformation on a scalar multiple of a vector has the 

same result as performing the transformation on the vector and then 

multiplying by that scalar.

Examining how a transformation transforms
It’s one thing to describe in words how a linear transformation changes a set 

of vectors into another set, but it’s usually more helpful to illustrate how a 

linear transformation works with several examples.

Consider the following linear transformation, which I choose to name with 

the capital letter T. The description of T is

T: R3 → R2 where
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which is read: “Transformation T takes a 3 × 1 vector and transforms it into 

a 2 × 1 vector. The elements in the 2 × 1 vector are a sum and difference of 

some elements in the 3 × 1 vector.”

After you’ve defined what a particular transformation does, you indicate that 

you want to perform that transformation on a vector v by writing T(v).

So, if you want T(v) when v is the following vector, you get

The linear operator (the rule describing the transformation) of a linear trans-

formation might also involve the multiplication of a matrix times the vector 

being operated upon. For example, if you have a matrix A, then the notation: 

T(x) = Ax reads: “The transformation T on vector x is performed by multiply-

ing matrix A times vector x.” When a linear transformation is defined using 

matrix multiplication, the input vectors all have a prescribed dimension so 

that the matrix can multiply them. (The need for the correct dimension is 

covered fully in Chapter 3.)

For example, consider the transformation involving the matrix A, shown next. 

The transformation T(x) = Ax (also written A * x). Matrix A can multiply any 

3 × 1 vector, and the result is a 3 × 1 vector.

Performing the linear transformation T on the vector x as shown below,
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Another example of a matrix being involved in the transformation operator is 

one where the matrix, the vectors being operated on, and the resulting vec-

tors all have different dimensions. For example, look at the linear transforma-

tion W in which W(v) = Bv. Note that the matrix B has dimension 2 × 3, the 

vector v is 3 × 1, and the resulting vectors are 2 × 1.

Again, for how and why this change in dimension occurs after matrix multipli-

cation, refer to the material in Chapter 3.

Completing the picture with linear transformation requirements
The two properties required to make a transformation perform as a linear 
transformation involve vector addition and scalar multiplication. Both proper-

ties require that you get the same result when performing the transformation 

on a sum or product after the operation as you do if you perform the transfor-

mation and then the operation.

 If T is a linear transformation and u and v are vectors and c is a scalar, then:

 ✓ T(u + v) = T(u) + T(v)

 ✓ T(cv) = cT(v)

For example, consider the linear transformation T that transforms 2 × 1 vec-

tors into 3 × 1 vectors.

I demonstrate the first of the two requirements — the additive requirement — 

needed for transformation T to be a linear transformation, using random vec-

tors u and v. First, the two vectors are added and the transformation per-

formed on the result. Then I show how to perform the transformation on the 

two original vectors and add the transformed results.
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The end results are the same, as they should be.

Now, using vector u and a scalar c = 5, I show the requirement involving 

scalar multiplication.

Again, the results are the same.

Recognizing when a transformation 
is a linear transformation
In the section “Completing the picture with linear transformation require-

ments,” I demonstrate for you how the rules for a linear transformation work. 

I start with a linear transformation, so, of course, the rules work. But how do 

you know that a transformation is really a linear transformation? If you have 

a candidate and want to determine if it’s a linear transformation, you might 

pick random vectors and try using the rules, but you may be very lucky and 
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happen to choose the only vectors that do work — accidentally avoiding all 

those that don’t work with the addition and multiplication rules. Instead of 

trying to come up with all possible vectors (which is usually impractical, if 

not impossible), you apply the transformation rule to some general vector 

and determine if the rules hold.

Establishing a process for determining whether 
you have a linear transformation
For example, using the same transformation T, as described in the previous 

section, and two general vectors u and v, I first prove that the transformation 

of a vector sum is the same as the sum of the transformations on the vector.

T and the vectors u and v:

I now determine if the rule involving addition and the transformation holds 

for all candidate vectors.

The sums (and differences) in the two end results are the same.
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Now, to show that the transformation of the scalar multiple is equal to the 

scalar times the transformation:

Voilá! Confirmation is achieved.

Sorting out the transformations that aren’t linear
A transformation is not termed a linear transformation unless the two opera-

tional qualifications are met. For example, the transformation W, shown next, 

fails when the addition property is applied.

The final vectors don’t match.
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And the next transformation, S, doesn’t meet the scalar multiplication property.

The top elements in the two end results don’t match; the vectors are different.

Proposing Properties of 
Linear Transformations

The definition of a linear transformation involves two operations and their 

properties. Many other properties of algebra also apply to linear operations 

when one or more vectors or transformations are involved. Some algebraic 

properties that you find associated with linear transformations are those of 

commutativity, associativity, distribution, and working with 0.

Summarizing the summing properties
In algebra, the associative property of addition establishes that, when adding 

the three terms x, y, and z, you get the same result by adding the sum of x 

and y to z as you do if you add x to the sum of y and z. In algebraic symbols, 

the associative property of addition is (x + y) + z = x + (y + z).

The associative property of addition applies to linear transformations when 

you perform more than one transformation on a vector.

 Given the vector v and the linear transformations T
1
, T

2
, and T

3
:

[T
1
(v) + T

2
(v)] + T

3
(v) = T

1
(v) + [T

2
(v) + T

3
(v)]

or, stated more simply:

[T
1
 + T

2
] + T

3
 = T

1
 + [T

2
 + T

3
]
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For example, let T
1
, T

2
, and T

3
 be linear transformations defined as shown:

Comparing the two different groupings defined by the associative property, 

and applying the transformations, you end up with the same result.

The commutative property is important in algebra and other mathematical 

areas because you have more flexibility when the order doesn’t matter. The 

addition of real numbers is commutative, because you can add two numbers 

in either order and get the same answer: x + y = y + x. Subtraction is not com-

mutative, because you get a different answer if you subtract 10 − 7 than if you 

subtract 7 − 10.

The commutative property of addition applies to linear transformations 

when you perform more than one transformation on a vector.

 Given the vector v and the linear transformations T
1
 and T

2
:

T
1
(v) + T

2
(v) = T

2
(v) + T

1
(v)

or, more simply:

T
1
 + T

2
 = T

2
 + T

1

So, using the two transformations T
1
 and T

2
 given next, you see that changing 

the order does not change the final result.
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 Because addition of vectors and matrices must follow the rules involving 

proper dimensions, this commutative property only applies when it makes 

any sense. See Chapter 3 for more on dimension and the addition of matrices.

Introducing transformation composition 
and some properties
Transformation composition is actually more like an embedded operation. 

When you perform the composition transformation T
1
 followed by transfor-

mation T
2
, you first perform transformation T

2
 on the vector v and then per-

form transformation T
1
 on the result.

 Transformation composition is defined as (T
1
T

2
)(v)= T

1
(T

2
(v)).

Being able to perform transformation composition is dependent upon the 

vectors and matrices being of the correct dimension. When the transforma-

tion T
1
 has a rule acting on 3 × 1 vectors, then the transformation T

2
 must 

have an output or result of 3 × 1 vectors.

For example, consider the following two transformations, T
1
 and T

2
, and the 

operation of transformation composition on the selected vector:
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Performing T
2
, first, on the 2 × 1 vector results in a 3 × 1 vector. T

1
 is then 

performed on that result.

And, in general, the composition of these two transformations is

Associating with vectors and the associative property of composition
The associative property has to do with the grouping of the transformations, 

not the order. In general, you can’t change the order of performing transfor-

mations and get the same result. But, with careful arrangements of transfor-

mations and dimension, you do get to see the associative property in action 

when composing transformations. The associative property states that when 

you perform transformation composition on the first of two transformations 

and then the result on a third, you get the same result as performing the com-

position on the last two transformations and then performing the transforma-

tion described by the first on the result of those second two. Whew! It’s more 

understandable written symbolically:

 Given the vector v and the linear transformations T
1
, T

2
, and T

3
:

([T
1
T

2
]T

3
)(v)= (T

1
[T

2
T

3
])(v)

For example, let T
1
, T

2
, and T

3
 be linear transformations defined as shown:
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The results of performing the transformations are shown here.

 Because multiplication of vectors and matrices must follow the rules involving 

proper dimensions, this associative property only applies when it makes any 

sense.

Scaling down the process with scalar multiplication
Performing scalar multiplication on matrices or vectors amounts to multi-

plying each element in the matrix or vector by a constant number. I cover 

scalar multiplication thoroughly in Chapter 3, if you want just a bit more 

information on what’s involved. Because transformations performed on vec-

tors result in other vectors, the properties of scalar multiplication do hold in 

transformation multiplication. In fact, the scalar can be introduced at any one 

of three places in the multiplication.

 Given the vector v and the linear transformations T
1
 and T

2
:

c([T
1
T

2
])(v) = ([cT

1
]T

2
)(v) = (T

1
[cT

2
])(v)

or,

c[T
1
T

2
] = [cT

1
]T

2
 = T

1
[cT

2
]

No matter where you introduce the scalar multiple, the result is the same.
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Performing identity checks with 
identity transformations
Addition and multiplication of real numbers include different identity ele-

ments for each operation. The identity for addition is 0, and the identity for 

multiplication is 1. When you add any number to 0 (or add 0 to the number), 

you don’t change that number’s identity. The same goes for multiplication. 

And, because this chapter deals in linear transformations, I get to introduce 

identity transformations.

Adding to the process with the additive identity transformation
The additive identity transformation, T

0
, takes a vector and transforms that 

vector into a zero vector.

 The linear transformation T
0
(v) = 0.

So, if you have a 2 × 1 vector, the additive identity transformation changes it 

into the 2 × 1 zero vector. Here’s the additive identity transformation at work:

Now I show how the additive identity transformation behaves when com-

bined with other transformations.

 When combining the additive identity transformation T
0
 with another linear 

transformation T you get:

T
o
(v) + T(v) = T(v) + T

0
(v) = T(v)

or

T
o
+ T = T + T

0
 = T
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For example, consider the following transformation, T, and vector, v:

Making a move with the multiplicative identity transformation
In general, the commutative property of multiplication does not apply to 

linear transformations when you perform more than one transformation on a 

vector. The exception comes into play when dealing with the multiplicative 

identity linear transformation.

 The linear transformation I is the multiplicative identity linear transformation 

when, given the vector v,

I(v) = v

Illustrating how the identity transformation works is quite simple. You per-

form the transformation on any vector and don’t change the vector at all.

What I show you here are just three different identity transformations. Each 

is different, but each has the same property of preserving the vector.

Furthermore, when multiplying the multiplicative identity I and some other 

linear transformation T, you have commutativity:

(I*T)(v) = (T*I)(v) = T(v)

or

IT = TI = T
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Again, the dimensions of the vectors have to be such that the multiplication 

makes sense.

Delving into the distributive property
The distributive property in algebra involves spreading out, or distributing, 
the product of some factor over the sum of two or more terms. For example, 

distributing the number 2 over three variable terms: 2(x + 2y + 3z) = 2x + 4y + 

6z. Linear transformations also have distributive laws.

 Given the vector v and the linear transformations T
1
, T

2
, and T

3
:

(T
1
* [T

2
 + T

3
])(v) = (T

1
*T

2
)(v) + (T

1
*T

3
)(v)

and

([T
1
 + T

2
]*T

3
)(v) = (T

1
 * T

3
)(v) + (T

2
 * T

3
)(v)

or, stated more simply:

T
1
[T

2
 +T

3
] = T

1
T

2
 + T

1
T

3

and

[T
1 
+ T

2
]T

3
 = T

1
T

3
 + T

2
T

3

Dimension qualifications must prevail, of course.

And finally, tying distribution, scalar multiplication, and one of the main 

properties of linear transformations:

T(c
1
v

1
 + c

2
v

2
 + c

3
v

3
 + . . . + c

k
 v

k
) = c

1
Tv

1
 + c

2
Tv

2
 + c

3
Tv

3
 + . . . + c

k
 Tv

k

Writing the Matrix of a 
Linear Transformation

One way of describing a linear transformation is to give rules involving the 

elements of the input vector and then the output vector. The preceding sec-

tions of this chapter use various rules to show what the linear transformation 

does. Another way of describing a linear transformation is to use a matrix 

multiplier instead of a rule, making computations quicker and easier.
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For example, consider the following linear transformation T and its rule:

The rule is simple enough. The transformation takes a 2 × 1 vector and 

changes the first element to its opposite, otherwise leaving the vector alone.

The corresponding matrix multiplication for this particular rule is as follows, 

where A is a 2 × 2 matrix:

So, in this case T(v) = A*v.

Manufacturing a matrix to replace a rule
In the previous section, it appeared that I magically introduced a matrix A to 

use for a linear transformation. But I really didn’t just dream up the matrix 

or have it drop out of thin air for me; I solved for that matrix using scalar 

multiples of two vectors. Beginning with the rule for transformation T, I wrote 

the sum of the two elements in the original vector multiplied times vectors 

containing the coefficients of elements in the resulting vector.

Then I took the two vectors of coefficients and created a matrix whose col-

umns are the vectors.
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Okay, that example was easy because I started out with the answer. Now let 

me show you starting from scratch. Consider next the rule given for transfor-

mation S:

Writing the rule as the sum of the three elements times three vectors of 

coefficients:

And then, writing the transformation matrix, A, using the vectors as columns:

The transformation S is equal to the product of matrix A times a 3 × 1 vector. 

Now I show you the matrix in action with an example.

Visualizing transformations involving 
rotations and reflections
A very nice way to illustrate the effect of a linear transformation is to draw a 

picture. And some of the nicest pictures to consider are those in two-space 

that involve rotations about the origin, reflections about a line, translations 

along a line, and size changes. In this section, I show you how rotations and 

reflections are written as rules and matrix multiplications.
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Rotating about the origin
Rotations about the origin are typically in a counterclockwise direction. In 

Figure 8-1, for example, I show the point (6,4) being rotated 90 degrees to the 

left — or counterclockwise. The distance from the original point (6,4) to the 

origin stays the same, and the angle measured from the beginning point to 

the ending point (with the vertex at the origin) is 90 degrees.

 

Figure 8-1: 
The point 
rotates to 

the left.
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“All well and good,” you say, “but what are the coordinates of the point 

resulting from the rotation?” To determine the coordinates, first I show you 

the general format for a matrix used in any counterclockwise rotations about 

the origin.

 When rotating the point (x,y) θ degrees about the origin in a counterclockwise 

direction, let matrix A multiply the vector v, containing the coordinates of the 

point, resulting in the coordinates of the ending point.

You’ll find the values of the sine and cosine of the basic angles in this book’s 

Cheat Sheet.
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Rotating the point (6,4) 90 degrees to a point in the second quadrant, you 

multiply matrix A times the vector formed from the coordinates. The sine of 

90 degrees is 1, and the cosine of 90 degrees is 0.

The coordinates of the point after the rotation are (−4,6). If you want to write 

the transformation as a rule rather than a matrix multiplication, you have

The matrix A also corresponds to the sum of the two vectors:

Now, using a not-quite-so-nice example, I rotate the point (−2,4) about the 

origin with an angle of 30 degrees. I say that the example isn’t quite as nice, 

because the value of the sine of 30 degrees is the fraction 1/2, and the cosine 

of 30 degrees has a radical in it. Fractions and radicals aren’t quite as nice as 

1s, 0s, and −1s in a matrix.

Rounding to the nearer hundredth, the coordinates of the point resulting 

from the rotation are (−3.73,2.46).

Reflecting across an axis or line
When a point is reflected over a line, the image point is the same distance from 

the line as the original point, and the segment drawn between the original point 
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and its image is perpendicular to the line of reflection. In Figure 8-2, I show 

you four different reflections. The left side shows the point (−2,4) reflected 

over the x-axis and y-axis. The second sketch shows you that same point, 

(−2,4) reflected over the line y = x and the line y = −x.

 

Figure 8-2: 
A point 

reflected 
across four 

different 
lines.
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The linear transformations resulting in reflections of a point over an axis or 

one of the lines shown in the figure are written as matrix multiplications and 

the rules are given here:

 ✓ Reflection over the x-axis:

 ✓ Reflection over the y-axis:

 ✓ Reflection over the line y = x:
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 ✓ Reflection over the line y = −x:

Insert your favorite coordinates for x and y and reflect away!

Translating, dilating, and contracting
The title of this section sounds like you’ve arrived at the delivery room in a 

foreign country. Sorry, no bundles of joy being produced here, but the results 

are mathematically pleasing!

Mathematically speaking, a translation is a slide. In two-space, a transla-

tion occurs when a point slides from one position to another along some 

straight line.

 When the point (x,y) moves x
0
 distance parallel to the x-axis and moves y

0
 

distance parallel to the y-axis, then the linear transformation T and matrix 

multiplication A result in the image point:

For example, if you want to translate the point (−2,4) a distance of five units 

to the right and three units down, then x
0
 = 5 and y

0
 = −3. And the transforma-

tion performed is

I show you the translation of the point (−2,4) five units right and three units 

down in Figure 8-3.
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Figure 8-3: 
The dis-

tances are 
measured 
parallel to 
the axes.
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A dilation increases the magnitude of a vector, and a contraction reduces the 

magnitude of a vector. In Chapter 2, I describe the magnitude of a vector — 

which is illustrated as its length when working in two-space and three-space. 

The linear transformation shown next is D, which doubles the magnitude of 

the vector. I also show what the transformation D does to vector v.

Comparing the magnitudes of the beginning and ending vectors:

As you can see, the magnitude has doubled as a result of the transformation. 

A contraction works much the same way, except that, in a contraction, the 

nonzero elements in the transformation matrix are always between 0 and 1 

(resulting in a smaller magnitude).
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So, in general, when applying a dilation or contraction transformation to a 

vector, you have the same multiplier along the main diagonal and 0s in all 

other positions of the matrix. If that multiplier is larger than 1, then you 

have a dilation. If the multiplier is between 0 and 1, you have a contraction. 

A multiplier of 1 has no effect; you’re multiplying by the multiplicative iden-

tity matrix.

Determining the Kernel and Range 
of a Linear Transformation

Linear transformations performed on vectors result in other vectors. 

Sometimes the resulting vectors are of the same dimension as those you 

started with, and sometimes the result has a different dimension. A special 

result of a linear transformation is that in which every element in the result-

ing vector is a 0. The kernel of a linear transformation is also referred to as 

the null space. The kernel and range of a linear transformation are related in 

that they’re both results of performing the linear transformation. The kernel 

is a special portion, and the range is everything that happens.

Keeping up with the kernel
 When the linear transformation T from a given set of vectors to another set of 

vectors results in one or more 0 vectors, then the original vectors, v
1
, v

2
, v

3
, . . . 

for which T(v) = 0 are called the kernel or null space of the set of vectors.

Note that T is not the additive identity vector, T
0
, which changes all vectors 

to zero vectors.

For example, consider the transformation T shown next and its effect on the 

vector v.
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The vector resulting from performing T on v is a zero vector, so the vector 

v must be in the null space of the set of vectors. The next question is “Are 

there any other vectors in the null space?”

To determine the vectors in a null space, you determine what the elements of 

the null-space vectors must be to satisfy the statement T(v) = 0 where 0 is a 

zero vector. Using the transformation T shown in the previous example, each 

of the elements in the resulting vector must equal 0.

To determine what the desired elements (those in the kernel) must be, you 

solve the system of homogeneous equations. Chapter 7 tells you all about 

systems of homogeneous equations and how to find the solutions. The 

system of equations to be solved is

Solving the system, you get that x = z and y = −z, so any vector of the form

(where the first and last elements are the same and the middle element is the 

opposite of the other two) is in the kernel of the vector set.

Ranging out to find the range
The range of a linear transformation T is the set of all vectors that result from 

performing T(v) where v is in a particular set of vectors.
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The range of a linear transformation may be rather restricted or it may be 

infinitely large. The range is dependent on the vector set that the transforma-

tion is being applied to and the way in which the transformation is defined.

For example, a transformation T changes a 4 × 1 vector into a 2 × 1 vector in 

the following way:

The way T is defined, any 2 × 1 matrix is in the range of the transformation.

The range of a linear transformation may be restricted by some format or 

rule. For example, the transformation S may be defined by matrix multiplica-

tion. Consider the following transformation:

The range of S is the vector resulting from the following multiplication:

Create an augmented matrix in which the elements of the resulting vector 

are represented by v
1
, v

2
, and v

3
. Then reduce the matrix to solve for the ele-

ments of the resulting vector in terms of the transformation matrix entries. 

For more on augmented matrices and solving systems using the reduced row 

echelon form, refer to Chapter 4.
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The last row in the reduced echelon form tells you that v
3
 = 4v

1
 + 2v

2
. The 

first entry tells you that x = 3v
1
 + v

2
 and the second entry has y = v

1
+ v

2
. So 

every vector in the range must have the following form:



Part III
Evaluating 

Determinants



In this part . . .

Step right up in line at the DMV! You don’t drive? No 

problem. Instead of heading to the Department of 

Motor Vehicles, in this part you cruise along with determi-

nants, matrices, and vectors. Learn the rules of the road-

way for evaluating determinants, and avoid the speed 

traps when manipulating matrices corresponding to the 

determinants. Put on your seat belt and get ready for the 

ride of your life!



Chapter 9

Keeping Things in Order 
with Permutations

In This Chapter
▶ Counting the number of arrangements possible

▶ Making lists of the different permutations

▶ Involving inversions in permutations

How many different ways can you arrange the members of your family 

for the yearly portrait? You can’t put Emily next to Tommy? Then you 

have fewer arrangements than you might if Tommy weren’t always pulling 

Emily’s hair.

Don’t worry — this chapter isn’t about the problems of a photographer. This 

is just my way of introducing you to the type of situation where you might 

apply permutations. A permutation is an arrangement or ordering of the ele-

ments of a set. One permutation of the letters CAT is ACT. In fact, the letters 

in the word cat can be arranged in six different ways: CAT, CTA, ACT, ATC, 

TAC, and TCA. Not all these arrangements are legitimate English words of 

course, but these are all the possible orderings.

Figuring out how many permutations are possible is the first step to actually 

listing those arrangements. If you know how many arrangements are pos-

sible, you know when to stop looking for more.

In this chapter, I also introduce you to inversions (special circumstances aris-

ing in some permutations). All these counting concerns are important when 

you deal with determinants (see Chapter 10).
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Computing and Investigating 
Permutations

A permutation is an ordering of the elements of a set. In the introduction to 

this chapter, I show you the six different ways of ordering the letters in the 

word cat. Now look at the set containing the first four letters of the alphabet 

and how the letters can be ordered. The four letters in the set {a, b, c, d} 

have 24 permutations: abcd, abdc, acbd, acdb, adbc, adcb, bacd, badc, bcad, 

bcda, bdac, bdca, cabd, cadb, cbad, cbda, cdab, cdba, dabc, dacb, dbac, 

dbca, dcab, or dcba. The number of possible permutations is dependent on 

the number of elements involved.

Counting on finding out how to count
The first task in determining and listing all the permutations of a set of items 

is to determine how many permutations or orderings there are to be found. 

The how many is the easy part. The harder part is incorporating some sort of 

systematic method for listing all these permutations — if you really do need a 

list of them.

Before showing you the formula that counts how many permutations you 

have of a particular set, let me introduce you to a mathematical operation 

called factorial. The factorial operation, designated by !, indicates that you 

multiply the number in front of the factorial symbol by every positive integer 

smaller than that number:

n! = n · (n − 1) · (n − 2) ··· 4 · 3 · 2 · 1

You start with the number n, decrease n by 1 and multiply it times the first 

number, decrease it by another 1 and multiply it times the first two, and 

keep doing the decreasing and multiplying until you get to the number 1 — 

always the smallest number in the product. So 4! = 4 · 3 · 2 · 1 = 24 and 7! = 7 · 

6 · 5 · 4 · 3 · 2 · 1 = 5,040. Also, by definition or convention, the value of 0! = 1. 

Assigning 0! the value of 1 makes some other mathematical formulas work 

properly.

Now, armed with what the factorial notation means, here’s how to find the 

number of permutations you have when you choose a number of items to 

permute:
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 ✓ If you want the number of permutations of all n items of a list, then the 

number of permutations is n!

 ✓ If you want the number of permutations of just r of the items chosen 

from the entire list of n items, then you use the following formula:

So, if you have ten people in your family and want to line up all ten of them 

side-by-side for a picture, you have 10! = 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 

3,628,800 different ways to arrange them. Of course, if Emily and Tommy 

can’t stand next to each other, you have to eliminate a few choices (but we 

don’t want to go there right now).

Sometimes, you have a set of items to choose from but won’t use every item. 

For example, if you have seven different CDs and you want to load three of 

them into your car’s CD player, how many different arrangements (permuta-

tions or orders) are possible? In this case, using the formula, the n is 7 and 

the r is 3.

Another way of looking at the result is that you have seven choices for the 

first CD you load, then six choices for the second CD, and five choices for the 

third CD. You have 210 different ways to choose three CDs and arrange them 

in some order.

Making a list and checking it twice
After you’ve determined how many different permutations or arrangements 

you can create from a list of items, you have to go about actually listing all 

those arrangements. The key to making a long list (or even a not-so-long list) 

is to use some sort of system. Two very effective methods of listing all the dif-

ferent permutations are making a systematic listing like a table and making a 

tree.

Listing the permutations table-wise
The best way for me to explain making a listing of all the permutations of 

a set is to just demonstrate how it’s done. For example, say I decide that I 

want to list all the arrangements of the digits 1, 2, 3, and 4 if I take just three 
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of them at a time. The first step is to determine how many arrangements I’m 

talking about.

Letting n = 4 and r = 3 in the formula,

I need a list of 24 different arrangements.

Of the 24 arrangements, 6 must start with 1, 6 start with 2, 6 start with 3, and 

6 start with 4. (I have just those four numbers to choose from.) I write the six 

1s in a row, leaving room for two more digits after each.

1 1 1 1 1 1

Then, after two of the 1s I put 2s; after the next two 1s I put 3s; and after the 

last two 1s I put 4s.

12 12 13 13 14 14

After the listing of 12 in the first two positions, my only choices to finish the 

arrangement are a 3 or a 4. After the 13 listings, I can finish with a 2 or a 4. 

And after the 14 listings, I can finish with a 2 or a 3.

123 124 132 134 142 143

That gives me the first six arrangements — all the arrangements starting with 

the digit 1. I do the same thing with the 2s, 3s, and 4s. Write the first digit for 

each grouping (six of them start with 2, six with 3, six with 4).

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

The next digit after a 2 can be a 1, a 3, or a 4, and so on.

21 21 23 23 24 24

31 31 32 32 34 34

41 41 42 42 43 43

Finally, finish off with the last two choices for each.
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213 214 231 234 241 243

312 314 321 324 341 342

412 413 421 423 431 432

These last 18 arrangements, plus the earlier 6 arrangements, give you the 24 

possible arrangements of three of the first four digits.

Branching out with a tree
A very effective and very visual way of listing all the possible arrangements of 

numbers is with a horizontally moving tree. The only drawback of using the 

tree method is that, if your set of objects is very big, the tree can get rather 

unwieldy.

I show you the top half of a tree used to produce the 24 permutations of 

three of the first four digits in Figure 9-1. Note that the tree is branching from 

left to right.

 

Figure 9-1: 
Creating a 
tree to list 
permuta-
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On the left, the first beginning digits (you could call them the trunks from 

which the branches are built) are 1s, then the next are 2s. If you could see 

the bottom half of the tree, you’d see the 3s and 4s. After each beginning 

digit, you have three choices for the second digit, which are shown at the end 

of the three branches. Each of the three second digits has two more choices, 

because you aren’t repeating any digits. You read the orderings from left 

to right, listing the digits you find from the leftmost branch to the tip of the 

last branch.

Bringing permutations into matrices 
(or matrices into permutations)
Rearranging elements in a list of numbers results in a permutation of the 

numbers — an ordering. When working with eigenvalues and eigenvectors in 

Chapter 16, it’s sometimes important to be able to recognize a permutation 
matrix.

 A permutation matrix is formed by rearranging the columns of an identity 

matrix.

For example, the 3 × 3 identity matrix has six different permutation matrices 

(including the original identity matrix):

One way of identifying the different permutation matrices is to use numbers 

such as 312 or 213 to indicate where the digit 1 is positioned in a particu-

lar row. For example, permutation 312 is represented by the fourth matrix, 

because row 1 has its 1 in the third column, row 2 has its 1 in the first 

column, and row 3 has its 1 in the second column.

The 3 × 3 identity matrix shown here has 3! = 6 permutation matrices. You 

count the number of permutation matrices associated with each identity 

matrix by using the permutation formula n!. If n is the number of rows and 

columns in the identity matrix, then n! is the number of permutation matrices 

possible.
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Involving Inversions in the Counting
The permutation of a set of numbers is said to have an inversion if a larger 

digit precedes a smaller one. For example, consider the permutation 5423. 

The 5 precedes 4, the 5 precedes 2, the 5 precedes 3, the 4 precedes 2, and 

the 4 precedes 3. You count five inversions in this number. Remember: I said 

you count when a larger digit comes before a smaller one — when they seem 

to be out of the natural order.

Investigating inversions
A permutation of a set of numbers has a countable number of inversions — 

even if that number is zero. The permutation 5423 has five inversions. Another 

way of looking at inversions is that they’re the minimum number of inter-

changes of consecutive elements necessary to arrange the numbers in their 

natural order. This ordering process is basic to many computer programming 

tasks.

For example, see how I rearrange the permutation 5423 by interchanging two 

consecutive (adjacent) numbers at a time. My demonstration is not the only 

way possible. You could do this in one of many more ways, but any choice 

will take five interchanges:

 ✓ Interchange the 4 and the 2: 5243

 ✓ Interchange the 5 and the 2: 2543

 ✓ Interchange the 4 and the 3: 2534

 ✓ Interchange the 5 and the 3: 2354

 ✓ Interchange the 5 and the 4: 2345

You think you can order the permutation in fewer steps using consecutive ele-

ments? I invite you to try! Now I introduce you to the inverse of a permutation.

 An inverse permutation is a permutation in which each number and the 

number of the place it occupies are exchanged.

For example, consider the permutation of the first five positive integers: 

25413. The inverse permutation associated with this particular arrangement 

is: 41532. The way the inverse works is that, in the original permutation,

 ✓ The 1 was in the fourth position, so I put the 4 in the first position.

 ✓ The 2 was in the first position, so I put the 1 in the second position.
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 ✓ The 3 was in the fifth position, so I put the 5 in the third position.

 ✓ The 4 was in the third position, so I put the 3 in the fourth position.

 ✓ The 5 was in the second position, so I put the 2 in the fifth position.

Another way to think about the inverse permutation is to look at the matrix 

permutations involved. The permutation 25413 is represented by the 5 × 5 

matrix A. And the permutation 41532 is represented by matrix B. I declare 

that A and B are inverses of one another and show it by multiplying the two 

matrices together — resulting in the 5 × 5 identity matrix.

And now, I tell you an interesting fact about a permutation and its inverse.

 The number of inversions in a permutation is equal to the number of inver-

sions in its inverse.

So, considering the permutation 25413 and its inverse, 41532, I count the 

number of inversions in each. The inversion 25413 has six inversions: 21, 54, 

51, 53, 41, and 43. The inversion 41532 also has six inversions: 41, 43, 42, 53, 

52, and 32. The inversions are different, but their count is the same.
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Inviting even and odd inversions 
to the party
A permutation (or ordering) is called even if it has an even number of inver-

sions, and it’s odd if it has an odd number of inversions. Can’t get much more 

straightforward than that. And with the categorization of permutation inver-

sions as even or odd, you find some interesting properties of the inversions.

 If a set has n elements, and n ≥ 2, then there are n! ÷ 2 even and n! ÷ 2 odd 

permutations of the set. For example, the set {1, 2, 3} has three elements, so 

you’ll find 3! ÷ 2 = [3 · (3 − 1) · (3 − 2)] ÷ 2 = 3 even permutations and 3 odd per-

mutations. The three even permutations (those with an even number of inver-

sions) are 123 (with zero inversions), 312 (with two inversions), and 231 (with 

two inversions). The three odd permutations are 132 (with one inversion), 213 

(with one inversion), and 321 (with three inversions).

Another interesting property of inversions has to do with making changes to 

a particular permutation.

 If you form a new permutation from a given permutation of a set of numbers 

by interchanging two elements, then the difference between the number of 

inversions in the two permutations is always an odd number.

For example, consider the permutation 543672, which has eight inversions: 

54, 53, 52, 43, 42, 32, 62, 72. I interchange the 5 and the 2, resulting in 243675, 

which has just three inversions: 43, 65, 75. The difference between the 

number of inversions is 8 − 3 = 5. Go ahead and try it yourself!
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Chapter 10

Determining Values 
of Determinants

In This Chapter
▶ Determining how to compute determinants

▶ Linking permutations to determinants

▶ Using cofactor expansion to evaluate large determinants

▶ Computing area and volume of figures in two-space and three-space

Determinants are linked with square matrices. You compute determi-

nants of matrices using the elements in the matrices. Determinants are 

used in many applications that you find in this part. In this chapter, you see 

how to compute area and volume using determinants.

The values of determinants are computed using one of several methods and 

can be evaluated using a graphing calculator or computer program. The 

beauty of being able to use a calculator or computer to compute determi-

nants is especially evident as the determinants get larger — more than three 

rows and columns. The process of cofactor expansion extends to all sizes of 

square matrices and lends itself very nicely to a tidy computer program.

Evaluating the Determinants 
of 2 × 2 Matrices

A determinant is a number associated with a square matrix; the determinant 

is a single number of worth. The number you get for a determinant is created 

using products of elements in the matrix along with sums and differences of 

those products. The products involve permutations of the elements in the 

matrix, and the signs (indicating a sum or a difference) of the products are 

dependent on the number of inversions found in the permutations. If you 

need a refresher on permutations or inversions, you’ll find what you need in 

Chapter 9.
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Involving permutations in determining 
the determinant
A 2 × 2 matrix has a determinant involving 2! = 2 products of the elements 

in the matrix. A 3 × 3 matrix has a determinant involving 3! = 6 products of 

the elements in the matrix. A 4 × 4 matrix has a determinant involving 4! = 24 

products of the elements in the matrix. The pattern goes on for as large as 

the matrix becomes. I ease into the process of computing the determinant by 

starting with the 2 × 2 matrix.

Tackling the 2 × 2 determinant first
Look at the 2 × 2 matrix.

The products involved in computing the determinant of a 2 × 2 matrix consist 

of multiplying the elements in the general form:

The 1 and 2 in the indices indicate the rows in the matrix, and the indices j
1
 

and j
2
 represent the number of the columns being permuted — in this case, 

just two of them.

 When referring to elements in a matrix, you use subscripts (indices) to indi-

cate the row and column where the element belongs. So the element a
13

 refers 

to the element in the first row and third column. For more on matrices and 

their elements, refer to Chapter 3.

In a 2 × 2 matrix, you find two columns and need the two permutations of the 

numbers 1 and 2. The two permutations are 12 and 21. Replacing the j’s in

with 12 and then 21, you get the two products a
11

a
22

 and a
12

a
21

.

The products a
11

a
22

 and a
12

a
21

 are created with the row and column structure 

of the indices and are also found by cross-multiplying — by multiplying the 

upper-left element by the lower-right element and multiplying the upper-

right element by the lower-left element. The product a
11

a
22

 has no inversions 
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(even), and the product a
12

a
21

 has the one inversion (odd). The even and 

odd designations are used when determining whether −1 or 1 multiplies the 

products.

 When determining the sign of the product of elements in a determinant, if the 

indices of the elements in a product have an odd number of inversions, then 

the product is multiplied by a −1. If the product has an even number of inver-

sions of the indices, then the product is multiplied by 1 (stays the same).

Now, after dealing with the preliminaries, I define the computations needed 

for the determinant. The determinant of the matrix A is designated with verti-

cal lines around the name of the matrix: |A|.

 For a 2 × 2 matrix, the determinant is:

The product a
11

a
22

 has an even number of inversions, so it’s multiplied by 

1; and the product a
12

a
21

 has an odd number of inversions, so it’s multiplied 

by −1.

Here is the numerical value associated with a particular 2 × 2 matrix:

Another way of describing the value of the determinant of a 2 × 2 matrix is to 

say it’s the difference between the cross-products.

Triumphing with a 3 × 3 determinant
The products involved in computing the determinant of a 3 × 3 matrix consist 

of the general elements:

Each product involves three elements from the matrix, one from each row. 

The j parts of the indices indicate columns — each a different column in each 

product. You have a total of 3! = 6 different products, all created by using 

the permutations of the numbers 1, 2, and 3 for the rows and columns. The 

six products are a
11

a
22

a
33

, a
11

a
23

a
32

, a
12

a
22

a
33

, a
12

a
23

a
31

, a
13

a
21

a
32

, and a
13

a
22

a
31

. 

Note that each product has one of each row and one of each column.
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The product a
11

a
22

a
33

 has no inversions (even) and is positive; the product 

a
11

a
23

a
32

 has one inversion (odd) and is negative; the product a
12

a
22

a
33

 has 

one inversion and is negative; the product a
12

a
23

a
31

 has two inversions (even) 

and is positive; the product a
13

a
21

a
32

 has two inversions (even) and is posi-

tive; and the product a
13

a
22

a
31

 has three inversions (odd) and is negative.

 For a 3 × 3 matrix, the determinant is:

“Egad!” you say. No, please don’t throw your pencil across the room in 

despair (like my brother did, way back a bunch of years, when I tried to help 

him with his algebra). I’ve shown you the proper definition of a 3 × 3 deter-

minant and why the different signs on the different products work, but now I 

can show you a very quick and practical way of computing the determinant 

of a 3 × 3 matrix without having to count inversions and line up signs.

The quick-and-easy, down-and-dirty method involves copying the first and 

second columns of the determinant outside, to the right of the determinant.

Now, the positive (even) products lie along diagonal lines starting at the top 

of the three columns inside the determinant and moving to the right. The 

negative (odd) products start at the top of the last column in the determinant 

and the two columns outside the determinant and move left.
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You add the products from the left-to-right slants, and subtract (multiply 

by −1) the products from the right-to-left slants:

Here’s an example using actual numbers:

Coping with cofactor expansion
You evaluate determinants of any size square matrix, but, as you see from the 

simple 3 × 3 determinant, the number of products to consider grows rapidly — 

you might even say permutationally. (Well, no one would really say that.)

Anyway, the determinant of a 4 × 4 matrix involves 4! = 24 products, half of 

which have even permutations of the indices and half of which have odd 

permutations. The determinant of a 5 × 5 matrix involves 5! = 120 products, 

and on and on it goes. The best way to handle the larger determinants is to 

reduce the large problems into several smaller, more manageable problems. 

The method I’m referring to is cofactor expansion. Evaluating determinants 

using cofactor expansion amounts to choosing a row or column of the target 

matrix and multiplying either a positive or negative version of each element 

in the chosen row or column times a minor of the determinant formed by 

eliminating the row and column of that element. Huh? Say that again. No, I 

won’t do that, but I’ll explain with a demonstration of what I mean by the 

elements and their respective minors.

 The minor of a determinant is a smaller determinant created by eliminating a 

specific row and column of the original determinant.
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For example, one minor of the 4 × 4 matrix A is formed when you remove the 

second row and third column of A to form a 3 × 3 matrix C.

Since the minor was created by elimination of the second row and third 

column, you denote the minor with C
23

. When using cofactor expansion to 

evaluate a determinant, you create several minors of the determinant and 

multiply them by positive or negative versions of the elements in a row or 

column. Here’s a formal explanation of this expansion:

 The value of the determinant of matrix A is:

The formula is read: The determinant of matrix A is the sum of the products 
formed by multiplying (1) the number −1 raised to the i + j power, (2) the ele-
ment a

ij 
, and (3) |C

ij
| the determinant of the minor associated with the element 

a
ij
. The elements a

ij
 are taken from one selected row or column of the original 

matrix A.

 The number obtained from (–1)i+j detA
ij
 = (–1)i+j |A

ij
| is called the ij-cofactor of 

matrix A.

For example, consider the 4 × 4 matrix A shown here:
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I chose to do cofactor expansion along the first row of the matrix. So the 

summation of the products along that row becomes:

You see how the −1 factors are being raised to powers formed from the sum 

of the numbers in the index of the particular element. The C
ij
 is the minor 

associated with the particular element.

Next, the powers of −1 and element multipliers are combined to simplify the 

statement:

And then the 3 × 3 determinants are evaluated and all the products formed. 

The results are then combined and the answer simplified:

= 1[0 + 60 + 0 − (0 + 180 + 0)] − 2[0 + 48 + 0 − (0 + 108 + 0)]

− 5[0 + 120 + 0 − (0 + 90 + 0 )] − 6[18 + 160 + 10 − (8 + 120 + 30)]

= 1[60 − 180] − 2[48 − 108] − 5[120 − 90] − 6[188 − 158]

= −120 + 120 − 150 − 180 = −330

You can use any column or row when performing cofactor expansion to 

evaluate a determinant. So it makes more sense to pick a column or row with 

a large number of zeros, if that’s possible. In the previous example, if I’d used 

column four instead of row one, then two of the four products would be 0, 

because the element multiplier is 0. Here’s what the computation looks like 

when expanding over the fourth column:
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It’s nice to have a smaller number of computations to perform.

Using Determinants with 
Area and Volume

A determinant is a number associated with a square matrix. It’s what you do 

with a determinant that makes it useful and important. Two very nice applica-

tions of the value of a determinant are associated with area and volume. By 

evaluating a determinant, you can find the area of a triangle, the vertices of 

which are described in the coordinate plane. And, even better, the value of a 

determinant is linked to the volume of a parallelepiped.

 Think of a parallelepiped as a cardboard box that may have been sat upon by 

an NFL linebacker. I give a better description later, in the “Paying the piper 

with volumes of parallel epipeds” section.

Finding the areas of triangles
The traditional method used for finding the area of a triangle is to find the 

height measured from one of the vertices, perpendicular to the opposite side. 

Another method involves Heron’s formula, which you use if you happen to 

know the length of each side of the triangle. Now I show you a method for 

finding the area of a triangle when you know the coordinates of the vertices 

of the triangle in two-space (on the coordinate axes).

The area of a triangle is found by taking one half the absolute value of the 

determinant of the matrix formed using the coordinates of the triangle and a 

column of 1s.
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 The area of a triangle with vertex coordinates (x
1
,y

1
), (x

2
,y

2
), and (x

3
,y

3
) is

The absolute value of a number n is shown with vertical segments, |n|, and 

the determinant of a matrix is also designated with the vertical bars. So you 

see some nested bars to show both absolute value and a determinant. That 

Taking flight with Heron’s formula
If you need to compute the area of a triangular figure, you can do so with the measures of the 
sides of the triangle. Heron’s formula for the area of a triangle, the sides of which measure a, b, 
and c, is

where s is the semiperimeter (half the perimeter of the triangle).

c

b

a

a + b + c
2

perimeter = p = a + b + c

semiperimeter = s = 

For example, if the sides of a triangular area measure 5, 7, and 8 inches, then the perimeter is 20 
inches, the semiperimeter, s, is half that or 10 inches, and the area is
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type of notation can get confusing, so sometimes an alternate form, using 

the letters det in front of the matrices’ brackets, is used to indicate the 

determinant of the matrix. So you’d see:

An example of using the determinant to find the area of a triangle is when the 

vertices of the triangle are (2,4), (9,6), and (7,−3), as shown in Figure 10-1. 

You could find the area using Heron’s formula, once you use the distance for-

mula to find the lengths of the three sides. But the determinant method will 

be much quicker and easier.

 

Figure 10-1: 
The coor-
dinates of 
the acute 

triangle.
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It doesn’t really matter which coordinates you choose to be (x
1
,y

1
), (x

2
,y

2
), or 

(x
3
,y

3
). And the absolute value part of the formula removes the necessity of 

having to choose between moving clockwise or counterclockwise around the 

triangle to select the vertices. So, placing the coordinates as elements in the 

determinant:

The area of the triangle is 29.5 square units.
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Pursuing parallelogram areas
A parallelogram is a four-sided polygon in which both pairs of opposite sides 

are parallel to one another and equal in length. The traditional method of 

finding the area of a parallelogram is to multiply the length of one of the sides 

times the perpendicular distance between that side and its opposite. The 

biggest stumbling block to finding the area of a parallelogram is in measuring 

the necessary lengths, especially that perpendicular distance. Plotting a par-

allelogram on the coordinate plane makes computing the area much easier.

A parallelogram graphed on the coordinate plane has an area that can be 

computed using a determinant. One of two different situations may occur 

with the parallelograms graphed in two-space: (1) One of the vertices of 

the parallelogram is at the origin, or (2) none of the vertices is at the origin. 

Having a vertex at the origin makes the work easier, but it’s not really all that 

hard to deal with a parallelogram that’s out there.

Originating parallelograms with the origin
To find the area of a parallelogram that has one of its vertices at the origin, 

you just need the coordinates of the vertices that are directly connected 

with the origin by one of the sides of the parallelogram. In Figure 10-2, you 

see a parallelogram drawn in the first quadrant. The two vertices connected 

to the origin by one of the sides of the parallelogram are at the points (1,2) 

and (6,5).

 

Figure 10-2: 
The paral-

lelogram 
is long and 

narrow.
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The two vertices link with the origin and determine the two different side 

lengths of the parallelogram. The area of the parallelogram is found using a 

determinant of the coordinates.

 The area of a parallelogram with one vertex at the origin and with coordinates 

of points (x
1
,y

1
) and (x

2
,y

2
) connecting a side of the parallelogram with the origin 

has an area equal to the absolute value of the determinant formed as follows:

So, in the case of the parallelogram in Figure 10-2, the area is found:

The area of the parallelogram is 7 square units.

Branching out with random parallelograms in two-space
When a parallelogram doesn’t have a vertex at the origin, you adjust or slide 

the parallelogram — maintaining its size and shape — until one of the verti-

ces ends up at the origin. In Figure 10-3, you see a parallelogram with all the 

vertices in the first quadrant.

 

Figure 10-3: 
All the 

points have 
positive 

coordinates.
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You can slide the parallelogram any way you want to put any of the vertices 

at the origin. But the move that makes most sense and seems to be easiest is 

to slide the parallelogram until the vertex at the point (3,1) meets up with the 

origin.

I’ve been calling the movement of the parallelogram a slide. The proper term 

in transformational geometry is translation. You translate a point or segment 

or figure from one position to another without changing the dimensions or 

shape of the figure. When performing a translation, the coordinates of each 

point change in the same manner.

 When a figure is translated in two-space, each point (x,y) is transformed into 

its image point (x',y') using the formulas x' = x + h and y' = y + k, where h is 

the horizontal change (and direction) of the translation and k is the vertical 

change (and direction) of the translation.

If the parallelogram in Figure 10-3 is translated three units to the left and one 

unit down, then the vertex (3,1) will end up at the origin. Here’s what hap-

pens to the four vertices using the translation x' = x − 3, y' = y − 1: (3,1) → 

(0,0), (7,3) → (4,2), (9,11) → (6,10), and (5,9) → (2,8). Figure 10-4 shows you 

what the new parallelogram looks like.

 

Figure 10-4: 
The size and 

shape stay 
the same 

with the 
translation.
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Now you can find the area of the parallelogram using the determinant and the 

vertices at (4,2) and (2,8).

The examples here have involved parallelograms — where the angles haven’t 

been right angles. Because rectangles, squares, and rhombi (the plural of 

rhombus) are special parallelograms, you can use this determinant method to 

find the areas of these special quadrilaterals, too.

Paying the piper with volumes 
of parallelepipeds
A parallelepiped is a fancy name for a squished box. Actually, I’m making light 

of a very precise mathematical structure. Just picture a six-sided figure, like 

a cardboard box, with opposite sides parallel to one another and opposite 

sides with the same dimensions. Also, a parallelepiped doesn’t need sides 

to be perpendicular to one another or corners of the sides to be 90 degrees. 

Every side is a parallelogram. So even a squished box is special, with its 

rectangular sides. In Figure 10-5, I show you a parallelepiped graphed in one 

of the eight octants of three-space. The vertices of three of the corners have 

labels shown as (x,y,z) coordinates.

 

Figure 10-5: 
A parallel-

epiped has 
three pairs 
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ent sides.
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When a parallelepiped has one of its vertices at the origin, then the volume of 

that parallelepiped is found with the determinant of a 3 × 3 matrix using the 

coordinates of the vertices at the other end of the sides of the parallelepiped 

that all meet at the origin.

 The volume of a parallelepiped with one vertex at the origin and with coor-

dinates of points (x
1
,y

1
,z

1
), (x

2
,y

2
,z

2
), and (x

3
,y

3
,z

3
) connecting an edge of the 

parallelepiped with the origin has a volume equal to the absolute value of the 

determinant formed as follows:

So, in the case of the parallelepiped found in Figure 10-5, the volume is 38 

cubic units:

If none of the vertices lies at the origin, then you can do a translation similar 

to that in two-space to get one of the vertices in position at the origin.
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Chapter 11

Personalizing the Properties 
of Determinants

In This Chapter
▶ Performing operations and manipulations on determinants

▶ Determining how the values of determinants change

▶ Putting manipulations together with computations to make life easier

▶ Taking advantage of upper triangular or lower triangular matrices

Determinants are functions applied to square matrices. When the ele-

ments of the square matrix are all numbers, then the determinant 

results in a single numerical value. In Chapter 10, I show you how to evaluate 

reasonably sized determinants and how to do cofactor expansion to make 

the computations easier.

In this chapter, I show you the many different properties of determinants — 

which actions leave the value of the determinant the same and how the value 

of the determinant changes when you perform other operations or actions. 

Many of the properties and processes involving determinants that I show you 

in this chapter are related to matrix operations and matrices, so a journey 

back to Chapter 3 isn’t a bad idea if you need a bit of a brush-up on those 

processes.

The properties presented in this chapter have a big payoff when working 

with determinants. As interesting as the properties are on their own, they 

truly become important when you want to make adjustments to matrices so 

that the computation of their determinants is easier. In this chapter, I intro-

duce you to the properties and then show you how very nice those proper-

ties are.
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Transposing and Inverting Determinants
The transpose of a matrix takes each row of the matrix and changes it into a 

column and each column of a matrix and makes it into a row. I cover matrix 

transposition in Chapter 3; but in this chapter you only see square matrices 

and their transposes. The inverse of a matrix is another matrix that’s closely 

linked to the first. Also, in Chapter 3, you find that the product of a matrix 

and its inverse is the identity matrix.

I introduce these ideas of transposing matrices and finding the inverses of 

matrices, because the processes are closely related when transposing deter-

minants and finding determinants of the inverses of matrices.

Determining the determinant 
of a transpose
You can compute the determinant of a square matrix using one of several 

methods (as found in Chapter 10) or by using a calculator or computer. And 

after you’ve found the determinant of a matrix, you don’t have to work much 

harder to find the determinant of the matrix’s transpose — mainly because 

the determinants are exactly the same.

 The determinant of matrix A is equal to the determinant of the transpose of 

matrix A: det (A) = det (AT).

For example, look at the following matrix A and its transpose:

The quick, easy way of evaluating the two determinants is to write the first 

three columns to the right of the determinant and multiply along the diago-

nals (see Chapter 10 for more on this procedure).
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The values of the determinants are the same. If you were to examine the dif-

ferent products created in the determinants of a matrix and its transpose, 

you’d find the same combinations of elements aligned with one another in 

both, resulting in the same final answer.

Investigating the determinant 
of the inverse
When you multiply a matrix times its inverse, you get an identity matrix. The 

identity matrix is square with a diagonal of 1s and the rest of the elements 

0s. A similar type of product occurs when you multiply the determinant 

of a matrix times the determinant of the inverse of the matrix: You get the 

number 1, which is the multiplicative identity.

 The determinant of matrix A is equal to the reciprocal (multiplicative inverse) 

of the determinant of the inverse of matrix A:

 Be careful with the –1 superscript. The inverse of matrix B is written B−1; this 

indicates the inverse matrix, not a reciprocal. The determinant of matrix B, 

|B| can have a reciprocal (if it isn’t zero). You can write that as |B|−1

The inverse of a matrix exists only if the determinant is not equal to 0.

The matrix A must be invertible — it must have an inverse. For example, the 

matrix B you see next has an inverse matrix B−1. 
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The product of B and B−1 is the identity matrix.

Now look at the values of the determinants of B and B−1.

The determinant of B is the reciprocal of the determinant of B−1. The product 

of 3 and 1/3 is 1.

The determinant of an identity matrix comes out to be equal to 1.

Interchanging Rows or Columns
When using matrices to solve systems of equations, you sometimes switch 

rows of the matrices to make a more convenient arrangement for the solving 

process. I go into great detail about solving systems of equations in Chapter 

4. Switching rows of a matrix around has absolutely no effect on the final 

answer to a system of equations — the solution is preserved. But switching 

rows in a determinant does have an effect, as does switching columns.
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To switch or interchange a row or column of a determinant, you just inter-

change the corresponding elements. I show you, next, the determinant of 

matrix A, what the determinant looks like when you interchange the first and 

third rows, and what the determinant looks like when you interchange the 

second and third columns.

 Interchanging two rows (or columns) of a matrix results in a determinant of 

the opposite sign. For example, take a look at matrix D and its determinant. I’ll 

interchange columns two and three and name the new matrix D'; then I’ll com-

pute the determinant of D'.

You might ask (of course, this is on the tip of your tongue), “What happens 

if you do both — interchange two rows and interchange two columns of the 

same matrix?” Your instinct may be to say that the two actions cancel one 

another out. Your instincts are right!

Take a look at matrix E, where I interchange the first and third rows and then, 

in the new matrix, interchange the first and second columns. I compare the 

value of the determinant of E with the determinant of the new, revised matrix 

E", which has two interchanges performed on it.
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Zeroing In on Zero Determinants
When computing the value of a determinant, you add and subtract the prod-

ucts of numbers. If you add and subtract the same amount, then the value of 

the determinant is equal to 0. Being able to recognize, ahead of time, that the 

value of a determinant is 0 is most helpful — you save the time it would take 

to do all the computations.

Finding a row or column of zeros
When a matrix has a row or column of zeros, then the value of the determi-

nant is equal to 0. Just consider what you get if you evaluate such a matrix 

with a row or column of zeros in terms of cofactor expansion (see Chapter 

10). If you choose the row or column of zeros to expand upon, then each 

product would include a zero, so you don’t have anything but nothing!

 If a matrix has a row or column of zeros, then the determinant associated with 

that matrix is equal to zero.

Zeroing out equal rows or columns
Another nice property of determinants — one that earns you a big fat 0 for 

the value — is in terms of elements in two rows or two columns. When the 

corresponding elements are the same, then the value of the determinant is 0.
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 If the corresponding elements in two rows (or columns) of a matrix are all 

equal, then the value of that determinant is zero.

This property involving equal rows or columns may take a bit more convinc-

ing, so let me start with an example. Consider the matrix F, in which the ele-

ments in the second and fourth columns are equal to one another. I compute 

the value of the determinant using cofactor expansion along the third row, 

because that row has a 0 in it.

You might be thinking that I just picked a convenient matrix — one that just 

happens to work for me. So I guess I’d better show you why this particular 

property holds. I’ll use two columns, again, and cofactor expansion over a 

random row. And this time, I’ll use the general terms for the elements in the 

matrix, letting the elements that are equal be equal to a, b, c, and d to make 

them stand out more. So, first look at my new matrix G with columns two and 

four containing equal elements.
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I evaluate the determinant of G using cofactor expansion over the first row.

Look at all those letters with all those terms — and the result is supposed to 

be zero? Don’t despair. You may see some patterns arising. First, look at the 

two lines starting with g
11

 and g
13

. If I rearrange the factors in each term so 

that the letters b, c, and d come first, in alphabetical order, followed by some 

g
ij
, you see that each term is both added and subtracted — the same num-

bers are in each part of the computation, so the sum is 0.

Now look at the rows in the determinant computation that start with a multi-

plier of a. I’ve rearranged the factors in each term so that the single letters 

come first and the elements in the matrix come in order. You see that each 

element that’s added in one row is subtracted in the other row. So, after dis-

tributing each a, you’ll get each term and its opposite, which gives you a 0. In 

the end, 0 + 0 = 0.
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I know that I’ve only shown you one general example — the determinant of a 

4 × 4 matrix with cofactor expansion over a specific row. I do hope, though, 

that it’s enough to convince you of the property that when you have two 

rows or columns in a matrix that are equal, then the value of the determinant 

associated with the matrix is 0.

Manipulating Matrices by Multiplying 
and Combining

Most matrices and their associated determinants are just fine in their original 

form, but some matrices need to be tweaked to make them more manageable. 

The tweaking comes, of course, with some particular ground rules. And the 

reasoning behind the particular manipulations is more clear in the later 

section “Tracking down determinants of triangular matrices.” For now, stick 

with me and just enjoy the properties that unfold.

Multiplying a row or column by a scalar
You have a perfectly nice matrix with its perfectly swell determinant, and 

then you decide that the matrix just isn’t quite nice enough. The second row 

has two fractions in it, and you just don’t like fractions. So you decide to mul-

tiply every term in the second row by 6 to get rid of the fractions. What does 

that do to the matrix? It changes the matrix, of course. But the change to the 

determinant associated with the matrix is predictable. The property change 

applies to multiplying an entire column by some number, too.

 If every element of a row (or column) of a matrix is multiplied by a particular 

scalar k, then the determinant of that matrix is k times the determinant of the 

original matrix. For example, consider the matrix G that has fractions in the 

second row. You find the determinant of G, slugging through the fractional 

multiplication:
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To be perfectly honest, the multiplication isn’t all that bad, but I didn’t want 

to overwhelm you with a truly nasty example — showing you the property 

with this matrix should be convincing enough. Now multiply each element in 

the second row of the matrix by 6. The number 6 is the least common mul-

tiple of the denominators of the two fractions.

Now, computing the determinant of the new matrix, you find that the rule 

holds, and that the value of the determinant is six times that of the determi-

nant of the original matrix: 6(68) = 408.

A common situation in matrices used in practical applications is that you 

have one or more elements that are decimals. And the decimals often range 

in the number of places; you even find some matrices using scientific nota-

tion to represent the numbers. In matrix H, the entire third column consists 

of numbers with at least three digits to the right of the decimal point, and the 

first row has all four numbers written in scientific notation.

 A number written in scientific notation consists of the product of (a) a number 

between 0 and 10 and (b) a power of 10. Positive exponents on the 10 are used 

for numbers greater than 10, and the original numbers are created by moving 

the decimal point to the right. Negative exponents indicate numbers smaller 

than 1, and you re-create the original number by moving the decimal point to 

the left. For example, 5.0 × 105 is another way of saying 500,000, and 5.0 × 10−5 

is another way of saying 0.00005.
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In matrix H, you multiply each element in the first row by 106, or 1,000,000, to 

eliminate all the negative exponents and decimal numbers.

Now, multiply each element in the third column by 100,000 to eliminate all 

the decimal numbers.

All the decimal numbers and scientific notation are gone, but now the matrix 

has a lot of large numbers. The determinant of the new matrix is 1,000,000 

times 100,000, or 100,000,000,000, times as large as the determinant of the 

original matrix. Without showing you all the gory details, here are the 

matrices (beginning and end) and their respective determinants:

The determinant of the original matrix is −0.00003294, and the determinant 

of the revised matrix is –3,294,000. When you multiply −0.00003294 by one 

hundred billion, 100,000,000,000(−0.00003294) = −3,294,000, the decimal point 

moved 11 places to the right. So, the big question is “Do you prefer decimals 

and scientific notation or big numbers?”
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Adding the multiple of a row or column 
to another row or column
When solving systems of equations using either the equations themselves 

or matrices, a common technique used is to add a multiple of one row to 

another row. The process usually results in reducing the number of variables 

you have to work with in the problem. (Intrigued? Turn to Chapter 4 to find 

out more.) The process of adding a multiple of one row to another (or one 

column to another) in a matrix has a surprising result: The determinant of 

the matrix doesn’t change.

I’m assuming that you’re surprised by this turn of events. After all, multiply-

ing a row or column by a scalar k makes the determinant of the new matrix k 

times that of the original matrix. And now, by involving an additional row (or 

column), the effect of the multiplying seems to be negated.

Let me start off with an example. In matrix J, I change the third row by adding 

two times each element in the second row to the corresponding element in 

the third row:

The determinants are the same. This property comes in very handy when 

you’re making adjustments to matrices — you don’t have to worry about 

keeping track of the multiples that you’ve introduced.



213 Chapter 11: Personalizing the Properties of Determinants

Taking on Upper or Lower 
Triangular Matrices

An upper triangular matrix or lower triangular matrix is a square matrix with 

all 0s either below or above the main diagonal that runs from the upper left 

to the lower right. In Chapter 3, I introduce the idea of having the triangular 

matrices and how the characteristics of triangular matrices make some com-

putations easier. In this section, you see how to create triangular matrices 

from previously non-triangular matrices, and then you find out just how won-

derful it is to have an upper triangular or lower triangular matrix.

Tracking down determinants 
of triangular matrices
Triangular matrices are full of 0s. All the elements either above or below 

the main diagonal of a triangular matrix are 0. Other elements in the matrix 

can be 0, too, but you look at the elements relative to the main diagonal and 

determine whether you have a triangular matrix.

Why am I getting so excited about these triangular matrices? Why would 

anyone spend so much time talking about them? The answer is simple: The 

determinant of a triangular matrix is computed by just looking at the ele-

ments on the main diagonal.

The main diagonal of a square matrix or determinant runs from the upper-left 

element down to the lower-right element. It’s the main diagonal that’s the big 

player in evaluating the determinants of upper triangular or lower triangular 

matrices.

 If matrix A is an upper (or lower) triangular matrix, then the determinant of A 

is equal to the product of the elements lying on that main diagonal. Consider, 

for example, the matrix N.



214 Part III: Evaluating Determinants 

According to the rule, the determinant |N| = 2(−2)(7)(3) = −84. Almost seems 

too easy. But it’s true! Now you see why I go to the trouble to change a matrix 

to a triangular matrix in the following section, “Cooking up a triangular matrix 

from scratch.”

Just to show you a comparison, I’ll compute the determinant of a matrix P. 

First, I use the tried-and-true method of multiplying on the diagonals. Then I 

compare the first answer to that obtained by just multiplying along the main 

diagonal.

This doesn’t really prove anything for all sizes of square matrices, but you 

can see how all the 0s introduce themselves in the products to produce 0 

terms.

A very special matrix is considered to be both upper triangular or lower tri-

angular. The matrix I’m referring to is the identity matrix.

 The determinant of an identity matrix is equal to 1.

Because you have 0s above and below the main diagonal of any identity 

matrix, you find the value of the determinant by multiplying along the main 

diagonal. The only product you’re ever going to get — regardless of the size 

of the identity matrix — is 1.

Cooking up a triangular 
matrix from scratch
An upper or lower triangular matrix has 0s below or above the main diagonal.

Here are examples of both types:
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If you don’t have a matrix that is upper triangular or lower triangular, you 

can perform row (column) operations to change your original matrix to a 

triangular matrix. And, it just so happens that the row (column) operations 

you can perform are exactly some of those described earlier in this chapter: 

interchanging rows or columns, multiplying a row or column by a scalar, and 

adding a multiple of a row or column to another row or column. The chal-

lenge is in determining just what you need to do to create the desired matrix.

Making one move by adding a multiple of a column to another column
In matrix K, shown next, you see that you almost have a lower triangular 

matrix. If the 3 in the second row, third column were a 0, then you’d have 

your triangular matrix.

The manipulation that changes the current matrix to a lower triangular 

matrix is adding the scalar multiple –3 times the second column to the first 

column.

The process also changed the last element in the third row. The signifi-

cance (or lack thereof) of the change is made clear in the “Tracking down 

determinants of triangular matrices” section, found earlier in this chapter.

Planning out more than one manipulation
The matrix K, in the previous section, required just one operation to make it 

into a triangular matrix. Even though it’s more work, you’ll find, when com-

puting determinants, that the extra effort to create a triangular matrix is well 

worth it.

Look at the 4 × 4 matrix L. You see three 0s on the lower left side. If the 3, –3, 

and 1 in the lower left portion were 0s, then you’d have an upper triangular 

matrix.
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The operations required to change the matrix L to an upper triangular matrix 

involve multiplying a row by a scalar and adding it to another row.

In the case of changing the matrix L, I chose to create 0s below the 2 in the 

first row, first column. That choice accounts for my first two steps. I have 0s 

below the 2, but, unfortunately, I lost one of the original 0s. But, never fear, 

row operations are here. Next, concentrate on getting 0s below the –1 on the 

main diagonal.

Now the 17/2 is the only element in the way of having a lower triangular matrix. 

Just one more operation takes care of it.

The last matrix is lower triangular. Ready for action. What action? I tell you in 

the next section.
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Creating an upper triangular 
or lower triangular matrix
It’s fine and dandy to use the rule of multiplying along the main diagonal to 

evaluate the determinant of a triangular matrix, but what happens if your 

matrix isn’t triangular — or is almost triangular? You first determine if the 

computations and manipulations necessary to change your matrix to one 

that’s triangular are worth it — if it’s less hassle and work than just evaluat-

ing the determinant of the matrix the way it is. In this section, I show you a 

few situations where it seems to be worth the necessary manipulations. You 

can be the judge.

Reflecting on the effects of a reflection
An upper triangular or lower triangular matrix has 0s either in the lower right 

corner or the upper left corner. But, does the position of the zeros make a 

difference? What if you have a matrix with 0s in the upper left or lower right 
corner? Matrix P, shown next, has zeros in the lower right corner and a diago-

nal running from upper right to lower left.

If you could switch the positions of the columns — exchange the first and the 

fourth columns and the second and third columns — then you’d have a lower 

triangular matrix.

Valuing Vandermonde
Alexandre-Théophile Vandermonde was born 
in Paris in 1735 and died there in 1796. Because 
Vandermonde’s father pretty much insisted that 
Alexandre pursue a career in music, his contri-
butions to mathematics were not all that great 
in number. But, what he lacked in number, he 
made up for in importance. Vandermonde is best 
known for his work in determinants (although 
some say that the determinant attributed to him 
shouldn’t have been, because it really wasn’t 

found in his work — someone misread his 
notations). The Vandermonde matrix, consist-
ing of rows that are powers of fixed numbers, 
is used in applications such as error-correcting 
codes and signal processing. And, even though 
Vandermonde got a late start and was another 
mathematician (in addition to Carnot, Monge, 
and others) who was politically involved in the 
French Revolution, he made significant contri-
butions to the theory of determinants.
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As I mention earlier, in the “Interchanging Rows or Columns” section, each 

interchange results in a change of signs for the determinant. Because I per-

formed two interchanges, the sign changed once and then changed back again. 

So the value of the determinant of P is the same as the value of the determinant 

of the changed matrix. The determinant is equal to the product along the main 

diagonal of the new matrix: 3(1)(2)(4) = 24. In this case, you get the value of the 

determinant when you multiply along the reverse diagonal.

You’re probably wondering if this multiplying along any diagonal works for 

all square matrices. The answer: no. For example, a 6 × 6 square matrix would 

require three interchanges to make the reverse diagonal a main diagonal — 

which is an odd number of interchanges, so you’d have three −1 multipliers. 

The value of the determinant of a 6 × 6 matrix is the opposite of the product 

along the reverse diagonal.

 If a square matrix has 0s above or below the reverse diagonal (opposite of the 

main diagonal), then the value of the determinant of the matrix is either the 

product of the elements along that reverse diagonal or −1 times the product 

of the elements on that diagonal. If the number of rows and columns, n, is a 

multiple of 4 or one greater than a multiple of 4 (written 4k or 4k + 1), then the 

product along the reverse diagonal is used. Multiply the product along the 

reverse diagonal by −1 in all other cases.

For example, consider matrices Q and R, where Q has dimension 5 × 5 and 

R has dimension 6 × 6. Because 5 is one greater than a multiple of 4, then 

the determinant of Q is the product along the reverse diagonal. In the case 

of matrix R, the determinant is equal to −1 times the product along the main 

diagonal, because the number 6 is not a multiple of 4 or 1 greater than a mul-

tiple of 4.
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Performing one or more manipulations to create the matrix you want
Several opportunities exist for changing a matrix to your liking. You just need 

to keep in mind how these opportunities affect the value of the determinant — if 

they do at all. Transposing matrices has no effect on the respective determi-

nants. Multiplying a row or column may have an effect, as well as interchanging 

rows or columns. I give you all the details on the effects to determinants in the 

earlier sections of this chapter. Here I show you several examples of changing 

matrices before evaluating determinants.

In the first example, I show you a 3 × 3 matrix T. To find the determinant of T, 

I can use the quick rule for a 3 × 3 matrix, or I can change the corresponding 

determinant to upper triangular and multiply along the main diagonal. Even 

though I see a 0 in the second row, third column, I prefer to take advantage 

of the 1 in the first row, first column. When adding multiples of one row to 

another, the number 1 comes in very handy.

Adding a multiple of one row to another row doesn’t change the value of the 

determinant (see “Adding the multiple of a row or column to another row or 

column,” earlier in this chapter), so I show the two such manipulations — 

adding –4 times the first row to the second row and adding –3 times the first 

row to the third row.

Now all I need for an upper triangular format is to have a 0 for the element 

in the third row, second column. The process will be easier if I divide each 

element in the second row by –3; this way, the element in the second row, 

second column is a 1. Dividing by –3 is the same as multiplying by –1/3. And, in 

the “Multiplying a row or column by a scalar” section, you see that the value 

of the determinant is changed by the amount of the multiple. Because I want 

to preserve the value of the original determinant, I need to make an adjust-

ment to compensate for the scalar multiplication.

 If the elements of a row or column of a determinant are multiplied by the 

scalar k (as long as k isn’t 0), then the value of the original determinant is 

equal to 1/k times the value of the new determinant.

So, I multiply the elements in the second row by −1/3 and adjust for this opera-

tion by multiplying the determinant by the reciprocal of −1/3, which is −3.
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Now I perform an operation that doesn’t change the value of the determinant — 

adding 5 times row two to row three.

And, using the product along the main diagonal, the value of the determinant 

of matrix T is equal to −3(1)(1)(13) = −39.

Sometimes, you don’t need to do much more to a determinant than a couple 

of interchanges and a minor adding of a scalar multiple to whip the determi-

nant into shape (a triangular shape, of course). The matrix W, which I show 

you next, has five 0s in it. By interchanging some columns, I almost have a 

lower triangular format.

By interchanging columns one and three, and then interchanging the new 

column three with column four, I almost have a lower triangular format. 

The two interchanges each introduced a multiplier of −1 to the value of the 
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determinant, but (−1)(−1) = 1, so the determinant has no real change. Now, 

by multiplying row two by –1 and adding the elements to row one, I finish the 

manipulations.

So now the value of the determinant of W is equal to the product of the ele-

ments along the main diagonal: 2(3)(−1)(4) = −24.

Determinants of Matrix Products
You find very specific rules about multiplying matrices — which matrices 

can multiply which other matrices — that are dependent on the dimensions 

of the matrices involved. In Chapter 3, you find all you’d ever want to know 

about multiplying two matrices together. In this chapter, I deal only with 

matrices that have determinants: square matrices. And, applying the rules 

involving multiplying matrices, you see that I can only multiply square 

matrices that have the same dimensions.

When you multiply two n × n matrices together, you get another n × n matrix. 

And the product of the determinants of the two matrices is equal to the 

determinant of the product matrix.

 If A and B are two n × n matrices, then det(AB) = [det(A)][det(B)].

For example, consider the matrices A and B and the product of A and B.

The respective determinants are |A| = −39, |B| = 65, and |AB| = −2,535 = 

(−39)(65). Go ahead — check my work!
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Or, how about a nicer example where I show the advantage of finding the 

determinant of the product rather than the determinants of the first two 

matrices and then multiplying them. Look at my matrices C and D:

The product of C and D is a matrix with nonzero elements running down the 

main diagonal and 0s elsewhere.

The determinant of the product of C and D is 6. This is much easier than find-

ing the determinants of C and D and multiplying them together. You can even 

use the product and the value of the determinant of either C or D to quickly 

find the value of the determinant of the other matrix.



Chapter 12

Taking Advantage 
of Cramer’s Rule

In This Chapter
▶ Joining forces with a matrix adjoint

▶ Finding matrix inverses using determinants

▶ Solving systems of equations using Cramer’s rule

▶ Considering the computing possibilities of calculators and computers

Determinants have many applications, and I get to show you one of the 

applications in this chapter. The application I refer to is that of using 

determinants to find the inverses of square matrices. And, as a bonus, I get 

to introduce you to the matrix adjoint — something else that’s needed to find 

matrix inverses using determinants.

Also in this chapter, I compare the good, the bad, and the ugly parts of work-

ing with determinants with similar tasks performed using good old algebra 

or matrix operations. When you’re informed about the possibilities, you’re 

better prepared to make a decision. So I give you some possibilities for 

finding matrix inverses and hope you use them to make the right choices!

Inviting Inverses to the Party with 
Determined Determinants

Many square matrices have inverses. The way that matrix inverses work is 

that if matrix M has an inverse, M−1, then the product of M and M−1 is an iden-

tity matrix, I. (I introduce matrix inverses and how to find them in Chapter 3, 

if you need a little reminder of how they work.)
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Not all square matrices have inverses; when a matrix doesn’t have an inverse, 

it’s termed singular. In this section, I deal mainly with matrices that do have 

inverses and offer an alternate method for finding that inverse — one that 

can’t be done unless you know how to find a determinant of a matrix.

Setting the scene for finding inverses
In Chapter 3, I show you how to find the inverse of a 2 × 2 matrix using a 

quick, down-and-dirty method of switching and dividing, and then I show how 

to find the inverse of any size square matrix using matrix row operations. 

With this method, the inverse of matrix A is found by performing row opera-

tions to change A to an identity matrix, while carrying along those same row 

operations into what was already an identity matrix. For example, here’s a 

matrix A, the augmented matrix used to solve for an inverse, and some row 

operations.

The row operations are designed to change the left-hand portion of the 

matrix into an identity matrix. The operations are carried all the way across.
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On the left, I now have the identity matrix, and on the right, I have the inverse 

of the original matrix. The product of A and its inverse, A−1, is an identity 

matrix.

You find more details on inverse matrices in Chapter 3. I use this example 

to set the tone for what I offer in this chapter as an alternative to finding 

inverses. And an alternate way of finding the inverse of a matrix is to use 

determinants.

Introducing the adjoint of a matrix
In Chapters 3 and 4, you find a lot of information about the inverse of a 

matrix, the transpose of a matrix, the determinant of a matrix, and so on. 

Now I present you with a whole new character for this play: the adjoint of 

a matrix. The adjoint is also known as an adjugate. The adjoint of matrix A, 

denoted adj(A), is used in computing the inverse of a matrix. In fact, you get 

the inverse of a matrix by dividing the adjoint by the determinant.



226 Part III: Evaluating Determinants 

 

The inverse exists only when det(A) is not equal to 0.

Okay, you have the formula now for computing an inverse using the determi-

nant and adjoint of a matrix, but you’re probably wondering, “Where in the 

world do I find this adjoint thing?”

 The adjoint of matrix A is a matrix of the cofactors of A that has been trans-

posed. So, if C is the matrix of the cofactors of A, then adj(A) = CT. (You find 

more on transposing a matrix in Chapter 3.)

In a 4 × 4 matrix, the adjoint is as follows. (Notice that the columns and rows 

are reversed — like creating the transpose of the original positioning.)

For example, to find the adjoint of matrix A, first recall that the cofactor C
ij
 is 

formed by multiplying the determinant of the minor times –1i+j power — the 

appropriate power of −1 based on the index of the element. (You can find out 

all about determinants in Chapters 10 and 11.) Here’s matrix A and its cofac-

tors. You identify a cofactor with C
ij
, where i and j are the corresponding row 

and column.
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Okay, you get the picture. I don’t need to show you all the steps for the rest 

of the cofactors.

So now I create the adjoint of matrix A, adj(A), using the cofactors.
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Instigating steps for the inverse
To find the inverse of matrix A, I need the determinant of A in addition to the 

adjoint. I find the determinant of a 4 × 4 matrix using cofactor expansion over 

a row or column. Because I have all the cofactors computed already, I choose 

to expand over the first row. (None of the elements is zero, so there’s no real 

advantage to using any particular row; row 1 works as well as any.)

 det(A) = 3(1) + (−3)(2) + (−1)(3) + 7(1) = 3 − 6 − 3 + 7 = 1

Refer to Chapter 10 if you need a refresher on evaluating determinants using 

cofactor expansion over a row or column.

Now I’m all set to find the inverse of matrix A using its adjoint and the deter-

minant. Each term in the adjoint is divided by the value of the determinant. 

Yes, the determinant comes out to have a value of 1, so you don’t really 

change anything by dividing, but I show you the format for all cases and all 

determinants — those without such a cooperative number.

You may not be completely impressed by this particular method of finding an 

inverse of a matrix. This method really lends itself more to being programmed 

in a computer or when using a mathematical computer utility. The biggest ben-

efit comes when your matrix has one or more variables for elements.
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Taking calculated steps 
with variable elements
Finding the inverse of a 3 × 3 matrix is relatively easy to do using either the 

row reduction method or the method of dividing the adjoint of the matrix by 

its determinant. The second method, using the adjoint, is usually the supe-

rior method to use when one or more elements are variables.

The matrix B contains the variables a and b. The determinant of B gives you 

information on the restrictions associated with the values of a and b in this 

particular matrix:

You see from the determinant, 2b(1−a), that a cannot be 1 and b cannot be 0, 

or the determinant would be equal to zero, and these values would make the 

matrix singular — without an inverse.

Now come the cofactors:
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The inverse of matrix B is equal to the elements in the adjoint of B divided by 

the determinant of B.

As values for a and b are chosen in an application, substitutions can then be 

made into the form for the inverse of the particular matrix. For example, if 

you have a situation where a = −1 and b = 2, then you replace the variables in 

the matrices to determine the matrix and its inverse.
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Solving Systems Using Cramer’s Rule
Systems of linear equations are solved in many different ways. You can solve 

the system of equations shown here in one of many ways:

 ✓ You can solve the system algebraically, using elimination or substitution.

 ✓ You can use augmented matrices.

 ✓ You can graph the lines associated with the equations.

 ✓ You can just keep guessing numbers, plugging them into the equations, 

and stop when you finally get a pair of numbers that works.

No matter which way you solve the system, you always get x = −3 and 

y = 4. In Chapter 4, I cover the algebraic, matrix, and graphical methods. I 

leave by-guess-or-by-golly to those who may be so inclined.

In this section, I introduce you to yet another method used to solve systems 

of equations. The method shown here makes use of the determinants of 

matrices associated with the system.

Assigning the positions for Cramer’s rule
To use Cramer’s rule, you write the system of linear equations as the product 

of matrices and vectors. Then you change one of the matrices by inserting 

vectors to change whole columns of the original matrices. I show you how 

this rule works with an example.

Consider the system of linear equations. Using methods from Chapter 4, you 

get the solution that x = 3, y = –2, and z = –1:

The system can be written as a coefficient matrix times a variable matrix/

vector and set equal to the constant vector, A*x = b. (In Chapter 6, I call this 

equation the matrix equation.)



232 Part III: Evaluating Determinants 

Now I describe how to create some modified matrices in which a whole 

column in the coefficient matrix is replaced with the elements in the con-

stant vector. When I write A
x
(b), it means to replace the x column (the first 

column) of the coefficient matrix with the elements in vector b to create the 

new, modified matrix. Likewise, A
y
(b) and A

z
(b) designate that the y column 

and the z column of matrix A should be replaced by the elements in the con-

stant vector. So, in the case of the system given here, A
x
(b) = A

x
, A

y
(b) = A

y
 

and A
z
(b) = A

z
:

The players (the modified matrices) are all in position now. I use the determi-

nants of each of the matrices to solve the system of equations.

Applying Cramer’s rule
Cramer’s rule for solving systems of linear equations says that, to find the 

value of each variable, you divide the determinant of each corresponding 

modified matrix by the determinant of the coefficient matrix.

So I find the determinant of the coefficient of matrix A and the determinants 

of the three modified matrices.
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Using Cramer’s rule and doing the dividing,

So, the solution of the system is x = 3, y = −2, z = −1.

Gabriel Cramer
Gabriel Cramer, best known for Cramer’s rule, 
was a Swiss mathematician who lived from 1704 
to 1752. His intelligence and mathematical prow-
ess were recognized very early; he received his 
doctorate at the age of 18, submitting a thesis 
on the theory of sound, and was co-chairman 
of the mathematics department at Académie de 
Clavin in Geneva at the age of 20. While teach-
ing and serving in his administrative position, 
Cramer introduced a major innovation: teaching 
his courses in French, rather than Latin.

Cramer published many articles over a wide 
range of subjects. In addition to his mathemati-
cal contributions, he also wrote on philosophy, 
the date of Easter, the aurora borealis, and law. 
He also proposed a solution to the St. Petersburg 
Paradox — a classical situation in game theory 
and probability where the expected outcome 
is an infinitely large amount. (Sometimes the 
actual mathematics flies in the face of common 
sense.)
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Having Cramer’s rule as an alternative adds another weapon to your arsenal 

when solving systems of equations. Creating and evaluating all those deter-

minants necessary with this method takes time and would be extremely cum-

bersome if the number of variables were large. That’s where computers and 

their programs come in — to perform repeated operations.

Recognizing and Dealing 
with a Nonanswer

Not all systems of linear equations have solutions, and some systems of 

equations have an infinite number of solutions. When solving systems of 

equations algebraically or with row operations in matrices, you have indica-

tors to tell you when the situation is infinitely many or none.

Taking clues from algebraic and 
augmented matrix solutions
When no solution exists for a system of equations, you get impossible state-
ments — statements that are never true — when working algebraically, and 

you get 0s equaling a nonzero number in a matrix. For example, consider 

solving the following system of linear equations:

Working algebraically, when you add the first and second equations together, 

you get 3x = 3, which has a solution of x = 1. When you add the first and 

fourth equations together, you get 4x = 3, which tells you that x = 3/4. You 

have a contradiction. The two equations can’t possibly provide solutions 

to the same system. For example, because the equations say that both vari-

able products are equal to 3, then you can set 3x = 4x. The only solution to 

this equation is x = 0, and that doesn’t satisfy 3x = 3. This is an example of 

the impossible statement. (For more on solving systems of equations, refer to 

Chapter 4.)

Perhaps you prefer to solve systems of linear equations using matrices and 

row operations. Using the same system of linear equations, you start with the 
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augmented matrix I show you here, and, after several operations, you end up 

with the last matrix.

The last line in the matrix translates into 0 = 1. The statement is impossible 

as a solution of the system.

In contrast, when a system of equations has an infinite number of solutions, 

you end up with equations and statements that are always true. For example, 

the system shown here has an infinite number of solutions:

Solving algebraically, when you add the first and second equations together, 

you get 3x − z = 4. You get the same equation when you add −1 times the first 

equation to the third equation: 3x − z = 4. Further algebra gives you 0 = 0. 

The statement 0 = 0 is always true. So the system of equations has an infinite 

number of solutions, all in the form of the ordered triple: (k, 5k − 7, 3k − 4). 

Using an augmented matrix, you’d end up with the bottom row all being 0s — 

very much like 0 = 0. Both are indicators of the fact that you have many, many 

solutions of the system of equations.

Now that I’ve outlined what to look for when solving systems of equations 

using algebraic techniques or augmented matrices, let me show you what the 

indicators are when using Cramer’s rule.

Cramming with Cramer for non-solutions
Cramer’s rule for solving systems of equations deals with dividing by a deter-

minant. The determinant is the greatest determiner of a situation of infinitely 
many or none. If you evaluate the determinant first, before doing any other 

work on the problem, you’ll save yourself a lot of time by recognizing the 

situation upfront.

In both cases — having no solution or an infinite number of solutions — the 

determinant of the coefficient matrix is equal to zero. Using Cramer’s rule, 
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you’re to divide by the coefficient matrix, so the zero prevents that step. 

After you’ve determined that the determinant of the coefficient matrix is 

equal to zero, then you investigate further to find out which situation you’re 

dealing with: none or infinitely many.

A good plan of attack to find the answer to your question is to go to the aug-

mented matrix of the system of equations and perform row operations to 

determine if you have a system with no solutions (getting a row of 0s ending 

in a nonzero number) or a system with infinitely many solutions (getting all 

0s in a row).

Making a Case for Calculators 
and Computer Programs

When matrices and their determinants and adjoints are of a reasonable size 

(though some would say that anything larger than 2 × 2 is not reasonable), 

the computations and manipulations necessary to perform the necessary 

tasks are relatively easy to do. By just jumping to a 4 × 4 matrix, you sud-

denly have to resort to cofactor expansion. Just imagine how much fun you’d 

have with a 6 × 6 matrix or larger! But, in real life and with real-life applica-

tions, the matrices needed get larger and larger to handle all the different 

aspects of a problem.

What you find in this section is not only how to handle the smaller matrices, 

but also the basis for handling any size matrix — if you have the strength and 

stamina to do it.

Calculating with a calculator
Hand-held graphing calculators have more power to compute than the first 

huge computers did — the ones that took up several rooms and required all 

those cards with holes in them. So, no wonder you can quickly and efficiently 

work with matrices using calculators.

The main problem with matrices and calculators is that you have to enter 

all the elements of the matrix by hand, keep track of which matrix you put 

where, and (often) interpret the decimal values that result — even when you 

carefully put in fractions (not decimals). The larger matrices can’t all be seen 

on the screen at once — you have to scroll right and left and up and down 

to see portions of the matrix. But, if you’re willing to put up with these little 

inconveniences, a graphing calculator is the tool for you.
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Most graphing calculators have buttons specifically designated for enter-

ing matrices and elements in the matrices. A matrix is usually denoted with 

brackets around the name, such as [A]. The bracket notation is consistent 

with your writing the elements of a matrix by hand within that same grouping 

symbol.

Graphing calculators vary by manufacturer, but they all have similar types 

of functions when it comes to matrices. Here are some of the more common 

functions and a representative type of notation indicating the function:

[A] 3 × 4 Naming or editing a matrix and entering the dimension

det ([A]) Calculating the determinant of a particular matrix

[A]T Performing a matrix transpose

dim ([A]) Giving the dimension of the matrix

identity (k) Creating an identity matrix of dimension k × k

rowSwap Interchanging two rows

row+ Adding one row to another

*row Multiplying a row by a scalar

*row+ Multiplying a row by a scalar and adding it to another row

The row-operation capabilities of calculators are wonderful, but they’re very 

specifically scripted. You need to enter matrix names and rows and scalar 

multiples in an exact fashion, usually with commas separating portions of 

the operation and no helpful prompts. When I use my calculator to do these 

operations, I usually tape a listing of the commands to the inside cover of my 

calculator, because they’re a challenge to remember (and, yes, I let my stu-

dents do this, too).

Sometimes you enter perfectly nice integers or fractions and end up with 

long, indistinguishable decimals. One way to combat this problem is to 

change the mode on your calculator to a specific number of decimal places — 

you can have the calculator round to two or three decimal places.

Another option is to try to change the decimals back to fractions. You won’t 

see the fractions on the calculator screen — they’ll keep reverting back to 

the decimals — but you can record the fractions on paper. The calculators 

usually have a function that changes repeating fractions back to decimals, 

but the function fails if the repeating part is too long or the number of digits 

entered is too short. You just have to experiment to see what it takes to get a 

result.
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Computing with a computer
One very nice thing about matrices, determinants, and Cramer’s rule is that 

the processes used are repeated and programmable. Just consider the way 

the elements of a matrix are identified:

Each element in matrix A is identified with a
ij
, where the i represents the row 

and j represents the column. By creating commands using the i and j, start-

ing with a particular number and increasing by one more, over and over, you 

can perform operations on any size matrix — letting the computer do all the 

computations. And computers are notoriously more accurate and reliable 

than humans. Of course, garbage in, garbage out: If you don’t program the 

computer correctly, you won’t get your answers.

You’ll find many computer utilities that already have the matrix operations 

built in. For instance, Derive and Mathematica are popular and widespread 

in educational institutions. But they take all the fun out of matrices! You just 

plop in the matrix values and get the answer! (You don’t see my problem 

with that? Oh, well.) Even Excel spreadsheets have operations that deal with 

matrices. One of the biggest advantages to computer programs and spread-

sheets is that you get a printout of your work, too.



Part IV
Involving Vector 

Spaces



In this part . . .

This isn’t Yankees vs. Red Sox or Democrats vs. 

Republicans. Rather than being for or against some-

thing, you get to embrace and be for the vector space and 

all the fine points that come with it. This part ends with 

eigenvalues vs. eigenvectors — and you’re the victor!



Chapter 13

Promoting the Properties 
of Vector Spaces

In This Chapter
▶ Defining a vector space in terms of elements and operations

▶ Looking for closure with operations performed on elements

▶ Investigating the associative and commutative properties in terms of vector operations

▶ Zeroing in on zeros and inverses in vector spaces

In mathematics, you find many instances where a collection of objects is 

identified or described and the objects in the collection are tied to some 

rules so that they can actually be a part of that collection. The simplest 

example is a set of real numbers and the operation of addition. The set A = 

{1, 2, 3, . . . } contains all the counting numbers. The rule for belonging to that 

set is that the smallest possible element is a 1, and all the other numbers are 

obtained by adding one more and then one more and then. . . . If you add any 

two counting numbers together, you get another counting number. The addi-

tion part is an operation performed on elements in the set.

In this chapter, I introduce you to the collection called a vector space. The qual-

ifications for becoming a member of a vector space and the rules to be abided 

by are stated and explained in this chapter. And, to further pique your interest, 

I show you how a vector space doesn’t even have to contain vectors — as you 

know them.

Delving into the Vector Space
A vector space is a collection of objects called vectors; the name vector space 
came from the properties of vectors and how they behave under two specific 

operations. For now, just think of the vectors in a vector space in terms of 

the objects described in Chapter 2 and found throughout the other earlier 

chapters. (I introduce other types of objects later in the chapter.)
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You can think of a vector space as a space that contains vectors — it’s where 

they all gather together (to do heaven only knows what). Those who occupy 

this vector space have to abide by some specific rules and cooperate when 

involved in the two operations.

Just to get the vision of vector spaces dancing in your head, I’ll show you the 

two simplest versions of vectors and vector operations. I use 2 × 1 vectors, 

with vector addition, +, being the traditional addition process as described 

in Chapter 2. I also define the vector multiplication, ,, as the scalar multi-

plication also found in Chapter 2. The vectors A and B are added together to 

give me vector C. I then multiply vector C by the scalar 6.

 Let me give you a formal definition of a vector space: Consider a set of ele-

ments, V, with vectors u, v, and w belonging to V, and the real numbers k and 

l, in which the operations of + and , have the following properties:

 ✓ u + v is also in V. (The set V is closed under the operation +.)

 ✓ u + v = v + u. (There exists commutativity under the operation +.)

 ✓ u + (v + w) = (u + v) + w. (There exists associativity under the opera-

tion +.)

 ✓ There exists an element 0 in V such that u + 0 = 0 + u = u for any ele-

ment u. (There exists an identity under the operation +.)

 ✓ For every element u in V, there exists an element −u such that u + −u = 

−u + u = 0. (There exist inverses under the operation +.)

 ✓ k , u is also in V. (The set V is closed under the operation ,.) For 

simplicity, the expression k , u is often written ku with the operation 

implied.

 ✓ k , (u + v) = k , u + k , , v, also written k(u + v) = ku + kv. (The 

scalar k distributes over the operation +.)

 ✓ (k + l) , u = k , u + l , u (also written [k + l]u = ku + lu.)

 ✓ k , (l , u) = (kl) , u.

 ✓ 1 , u = u.

Yes, you’re probably wondering about these strange + and , symbols and 

asking yourself if I couldn’t just have used + and ×. The answer is a simple 

“No.” The operations of + and , sometimes act in a manner similar to our 
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usual addition and multiplication, but they’re often quite different. The rules 

are very strict and a bit different in vector spaces. But one bright note is that 

sets containing all the matrices of a particular dimension, m × n, will form a 

vector space. In the next sections of this chapter, I describe the vector space 

operations and rules in more detail.

Describing the Two Operations
The two operations associated with a vector space are vector addition 

(denoted +) and scalar multiplication (with the symbol ,). The two opera-

tions may behave exactly as you’d expect, considering your vast experience 

with adding and multiplying. But the two operations might take a wild swing 

one way or another to a completely different type of compounding of activi-

ties and operations.

Letting vector spaces grow 
with vector addition
A vector space is tied to the operation of vector addition. The operation itself 

may vary, depending on the set of objects involved, but, in all cases, vector 

addition is performed on two vectors (unlike vector multiplication). For 

example, consider the vector space, V, consisting of all ordered pairs (x,y) 

which represent a 2 × 1 vector in standard position. (Refer to Chapter 2 for 

more on how vectors come in all sizes.) In the case of these ordered pairs, 

(x,y), vector addition is defined as (x
1
,y

1
) + (x

2
,y

2
) = (x

1 
+ x

2
,y

1
+ y

2
). You add 

the respective coordinates together to get a new set of coordinates. So the 

vector addition has some adding in it, but the format is just a tad different 

from adding 2 + 3.

Another example of a vector space that uses a familiar method of vector addi-

tion is the set of all 2 × 2 matrices that have a trace equal to zero.

 The trace of a square matrix is the sum of the elements that lie along the main 

diagonal. The matrices shown here have a trace of 0:

where trace a
11 

+ a
22

 = 0.

So vector addition using elements from the set of all 2 × 2 matrices whose 

trace is equal to zero is defined:
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and (a
11 

+ b
11

) + (a
22 

+ b
22

) = 0.

Any square matrix can have a trace of 0. For example, matrices D and E, 

shown here, have sums of 0 along the main diagonal.

Now let me depart from having vectors or matrices in my vector space and 

describe Z, a vector space whose elements are all positive real numbers. I 

define the vector addition in this vector space as follows:

Let x and y be positive real numbers. Then x + y = xy.

For example, in this vector space, if I use vector addition on the numbers 2 

and 5, I get 2 + 5 = 10. Yes, I can do that. I can define my vector addition in 

any way that it works with my particular application. Of course, other qualifi-

cations have to be met for my vector addition to qualify in the vector space. I 

cover the other qualifications in the next few sections of this chapter.

Making vector multiplication meaningful
Vector multiplication is often referred to as scalar multiplication, because the 

operation involves just one vector and a real number, not two vectors as in 

vector addition. For example, I describe vector multiplication on that set of 

2 × 2 matrices whose trace is equal to 0. Letting A be a matrix in the set and k 

be a real number, then:

and ka
11

 + ka
22

 = k(a
11

 + a
22

) = 0.

Also, going for another nonstandard vector space (not using vectors or 

matrices for the elements), I could define the operation of vector multiplica-

tion on the set of positive real numbers as follows:

If x is a positive real number and k is any real number, then k , x = xk.
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So, if you perform vector multiplication on the number 2 where k is 5, you get 

5 , 2 = 25 = 32. 

Looking for closure with vector operations
One requirement of a vector space and its vector operations is that the space 

must be closed under both of the operations. The designation closed is used 

whenever any results of performing a particular operation on any elements 

in a set are always more elements in the original set. For example, the count-

ing numbers 1, 2, 3, . . . are closed under addition because, when you add two 

counting numbers together, you always get another counting number. The 

counting numbers are not closed under subtraction, because sometimes you 

get negative numbers as results when you subtract (not counting numbers).

Consider the vector space containing the 2 × 2 matrices with a trace of 0. For 

the set of matrices to be closed under vector addition, every time you use 

the addition operation on two of the matrices, you must always get another 

matrix in the set. For example, consider the matrices A and B that I show you 

here, and the resulting matrix under vector addition. The resulting matrices 

all have a trace of 0.

Did I just pull out a set of matrices that appear to work under these circum-

stances? Can you be sure that the resulting trace will always be equal to 0, no 

matter what matrices I start with? Here I show you that the set of matrices is 

closed under vector addition by using generalized vectors:

Any matrix resulting from this vector addition still has a trace equal to 0.

Because the vector addition in the previous example is so closely tied to 

matrix addition, you may want to see something a little different to be 
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completely convinced about this closure stuff. Consider the vector space 

consisting of real numbers and with vector addition defined: x + y = xy 
(where x and y are two of those real numbers). For example, replace the x 

and the y with the numbers 2 and 5. Performing vector addition, you get a 

result of 10, which is another positive real number. Multiplying two positive 

real numbers together will always result in a positive real number (although 

you’re probably still wondering why I call this operation addition).

I now continue with the positive real numbers and my definition of vector 

multiplication given in “Making vector multiplication meaningful.” If you 

define the vector multiplication k , x = xk, the result of raising a positive 

real number to a power is always another positive real number. For example, 

3 , 4 = 43 = 64, and −3 , 4 = 4−3 = 1/64. The result will always be a positive real 

number (even if it’s a fraction).

Ferreting out the failures to close
I keep showing you examples of vector spaces and their operations and how 

there always seems to be closure. Instead of having you believe that, no 

matter what the elements or what the operations, you always have closure, 

I’d better set the record straight right now.

For example, consider the set of 2 × 2 matrices of the form:

where a and b are real numbers. The elements b and −b are opposites of one 

another, and the number 1 is always in the a
22

 position. I’ll let the vector addi-

tion be just normal addition of matrices — where you add the elements in the 

corresponding positions. I show you a lack of closure with a simple example 

of using the vector addition on two matrices:
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In the final matrix, the elements in all but the second row, second column 

position are what they should be. All the elements are real numbers, with the 

opposites still in the a
12

 and a
21

 positions, but I have a 2 where there should 

be a 1. The resulting matrix is not in the original set. The set is not closed 

under +.

An example of a lack of closure involving vector multiplication occurs 

when the set of elements consists of the vectors (x,y,2). The vectors with 

this format have real numbers, x and y for the first two coordinates, and 

the number 2 for the third coordinate. Letting the vector multiplication be 

defined k , (x,y,2) = (kx,ky,2k), the resulting vectors would not be in the 

original set, because the last coordinate is not a 2 unless the multiplier, k, is 

equal to 1.

Singling Out the Specifics of 
Vector Space Properties

The various properties and requirements of the elements and operations 

involved in a vector space include closure, commutativity, associativity, 

opposites, and identities. I cover closure in the earlier section, “Looking for 

William Hamilton
Sir William Rowan Hamilton was an Irish math-
ematician, physicist, and astronomer. He was 
born in Dublin, Ireland, in 1805, and died there in 
1865. William was pretty much a child prodigy, 
able to read Greek, Hebrew, and Latin by the 
age of 5, and familiar with half a dozen Asian 
languages by the age of 10. He was introduced 
to formal mathematics at the age of 13 — the 
mathematics written in French, with which he 
was then fluent.

Hamilton was interested in poetry as a young 
man, but his poetical endeavors weren’t par-
ticularly good. Perhaps his tendency to write 
letters that were 50 to 100 pages long (covering 
every minute detail of a subject) were his outlet 
for lack of success in poetry.

Hamilton was appointed Royal Astronomer of 
Ireland at the age of 22 and was knighted for 
his mathematical and other scientific contribu-
tions at the age of 30. Hamilton is well known 
for his discovery of quaternions, an extension 
of complex numbers. This discovery led the 
way to a freedom that mathematicians could 
then enjoy — being able to describe new alge-
bras that weren’t held to the formal rules. The 
new algebras could be collections of specific 
objects held to operations and rules dictated 
by the application. Quaternions are used today 
in computer graphics, signal processing, and 
control theory.
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closure with vector operations.” In this section, I address the other proper-

ties by explaining the properties more fully and showing you examples of 

success and failure (to meet the properties).

Changing the order with commutativity 
of vector addition
The vector addition operation, +, is performed on two vectors — resulting in 

another vector in the vector space. One property of the operation of vector 

addition that is very nice and very helpful is commutativity. When a vector 

operation provides commutativity, you don’t have to worry about what order 

the vectors are in when you perform the operation on the two of them. You 

get the same result when you add vectors u + v as when you add v + u. For 

example, consider the vector space containing 2 × 2 matrices of the form:

where a and b are real numbers.

When performing vector addition, the order doesn’t matter.

The commutativity holds for this example, because the definition of vector 

addition is based on our addition of real numbers, which is also commutative.

Now let me show you an example of what you might think should illustrate 

commutativity of addition, but what doesn’t pan out in the end. Let the set 

X consist of the six 2 × 2 matrices that represent reflections and rotations 

of points in the coordinate plane. This set is closed under +, where adding 

means to perform the one transformation and then the second transforma-

tion on the results of the first. The matrices and their transformations are as 

follows:
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Refer to Chapter 8 for more on matrices representing reflections and rotations.

When you perform vector addition using these matrices, you find that the 

vector addition over the set X is not commutative. For example, if you take 

the point (2,3) and first reflect it over the y-axis and then rotate it 90 degrees, 

you don’t get the same result as rotating it 90 degrees followed by reflect-

ing it over the y-axis. First, let me write the vector addition as T
1
(v) + T

2
(v), 

which, in this case, is T
y
(v) + T

90
(v) for the first way and T

90
(v) + T

y
(v) for 

the second way. The vector that’s first input has coordinates x and y. The 

result of that first transformation gives you vector v', with coordinates x' and 

y' — which are input into the second transformation.

Using the matrix transformations as described previously,

and showing the two operations performed in opposite orders, 
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The results of the different ordering of the operations are completely dif-

ferent. The first ordering has you end up at the point (−3,−2) and the second 

ordering ends up at (3,2). Commutativity does not exist for + in the situation.

Regrouping with addition and 
scalar multiplication
The associative property refers to groupings rather than order. When you 

add three numbers together, such as 47 + 8 + 2, you get the same answer if 

you add (47 + 8) + 2 as you do when you add 47 + (8 + 2). The second version 

is easier, because you add 47 to 10 and don’t have to stumble with any carry-
ing in addition. A vector space has associativity under addition, and you also 

find some associativity at work when multiplying by more than one scalar.

First, let me show you how the vector space consisting of 2 × 2 vectors of the 

following form illustrates the property of associativity over vector addition:

I add three general vectors of the same form together and observe that the 

results are the same whether you perform vector addition on the first two 
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followed by the third or add the first to the result of vector addition on the 

second two. The vector addition, +, is just normal matrix addition.

Now look at what happens when you use the associative property with two 

scalar multiplications over a vector. I have to be a little free with the process 

of multiplying two scalars together — I assume regular multiplication — but 

you should see the structure here:

k , (l , u) = (kl) , u

You see that using vector multiplication of the scalar k over the result of mul-

tiplying l times the vector u is the same as first multiplying the two scalars 

together and then using vector multiplication of the result over the vector.

For example, using a 2 × 2 vector and normal scalar multiplication of a matrix, 

I show the results of the two different methods. I choose to use some specific 

numbers, although any will work.

The results are the same. You choose one method over another when one 

method is more convenient — or when the computation is easier to do.

Distributing the wealth 
of scalars over vectors
The distributive property of algebra reads a(b + c) = ab + ac. The property 

says that you get the same result when multiplying a number times the sum 
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of two values as you do when multiplying the number times each of the two 

values and then finding the sum of the products. You see two properties of 

vector spaces that appear to act like the distributive property.

First, k , (u + v) = k , u + k , , v. This statement says that the scalar k 

distributes or multiplies over the vector operation +. You can either add the 

two vectors together and then perform scalar multiplication on the result, or 

perform the scalar multiplication first. Let me show you an example of where 

adding the two vectors together first makes more sense. I show you two 1 × 3 

vectors from a vector space and the execution of the property.

Compare the preceding computations with those that are necessary if you 

don’t perform the addition first.

You want to take advantage of the nicer computations. Because the vectors 

and operations are a part of a vector space, you can take the more sensible 

route.

Now look at the other form of distributive property. In this property, you see 

that multiplying a vector by the sum of two scalars is equal to distributing 

each of the scalars over the vector by multiplying and then adding the prod-

ucts together: (k + l) , u = k , u + l , u. Compare the two equal results 

with the computations that are required.
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Zeroing in on the idea of a zero vector
A vector space must have an identity element or a zero. The additive identity 

of the real numbers is 0. And the way a zero behaves is that it doesn’t change 
the identity of any value it’s added to or that’s added to it. The same property 

of zero exists with vector spaces and vector addition. In a vector space, you 

have a special vector, designated 0, where 0 + v = v, and v + 0 = v.

For example, the vector space containing 2 × 2 matrices of the following form 

has a zero vector whose elements are all zeros.

The zero vector also plays a role with inverses of vectors, as you see in the 

next section.

Adding in the inverse of addition
In a vector space, every element has an additive inverse. What this means is 

that for every vector, u, you also have the inverse of u, which I designate −u. 

Combining u and its inverse using vector addition, you get the zero vector. So 

u + −u = −u + u = 0.

For example, the set of 2 × 1 vectors, where the second element is −3 times 

the first element, forms a vector space under the usual definitions of matrix 

addition and scalar multiplication. So the general vector and its inverse are

Adding the two vectors together gives you the zero vector. What’s the 

inverse of the zero vector? Why, the zero vector is its own inverse! How cool!
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Delighting in some final details
Vector spaces have specific requirements and properties. I offer three more 

statements or properties that arise from the original properties — or are just 

clarifications of what goes on:

 ✓ 0 , u = 0: Whenever you multiply a vector in a vector space by the 

scalar 0, you end up with the zero vector of that vector space.

 ✓ k , 0 = 0: No matter what scalar you multiply the zero vector by, you 

still have the zero vector — the scalar can’t change that.

 ✓ −u = (−1) , u: The opposite of some vector u, is written as −u, which is 

equivalent to multiplying the original vector, u, by the scalar −1.



Chapter 14

Seeking Out Subspaces 
of a Vector Space

In This Chapter
▶ Determining whether a subset is a subspace of a vector space

▶ Spanning the horizon with spanning sets

▶ Getting in line with column spaces and null spaces

You go into a local sandwich shop and order a sub. What goes into your 

sub? Why, anything you want — or, at least, anything that’s available 

in the shop. One person’s sub is usually different from another person’s sub, 

but they all contain ingredients that are available on the menu. Now that I 

have you drooling, let me connect this culinary meandering to vector spaces 

and subspaces.

The relationship between a subspace and its vector space is somewhat like 

that sandwich made up of some of the available ingredients. Or, if you prefer 

my leaving the world of food and moving to a mathematical analogy, think of 

the subset of a set as it’s related to its superset. Mathematically speaking, for 

a set to be a subset of another set (the superset), the subset has to be made 

up of only elements found in that superset. For example, the set M = {1, 2, 3, 

a, b, c} is a subset of N = {1, 2, 3, 4, a, b, c, d, e, $, #}, because all of the ele-

ments in M are also in N. The set N has many other possible subsets that can 

be made of anywhere from 0 to 11 elements. And now, to get to the subject at 

hand, I tackle vector spaces and subspaces.

In order for a particular set of objects to be termed a subspace of a vector 

space, that set of objects has to meet some rigid qualifications or standards. 

The qualifications have to do with being a particular type of subset and with 

using some particular operations. I give you all the details on the terms of 

qualifying for subspacehood in this chapter.
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Investigating Properties Associated 
with Subspaces

For a set W to be a subspace of vector space V, then W must be a non-empty 

subset of V. Having only non-empty sets is the first difference between the 

set-subset relationship and the vector-subspace relationship. The other 

qualification is that subset W must itself be a vector space with respect to 

the same operations as those in V.

 The set W is a subspace of vector space V if all the following apply:

 ✓ W is a non-empty subset of V.

 ✓ W is a vector space.

 ✓ The operations of vector addition and scalar multiplication as defined in 

W are also those same operations found in V.

It’s actually sufficient, when determining if W is a subspace of V, to just show 

that W is a subset of V and that W is closed with respect to the two opera-

tions of + and , that apply to V. In other words, the sum v
1
 + v

2
 belongs 

to the vector space V, if both v
1
 and v

2
 are in V, and c , v

1
 is also in V. If you 

need a refresher on the operations associated with a vector space, then refer 

to Chapter 13, where you find all the information you need on the operations.

 In general, vector spaces have an infinite number of vectors. The only real 

vector space with a finite (countable) number of vectors is the vector space 

containing only the zero vector.

Determining whether you have a subset
If a set W is even to be considered as a subspace of a vector space V, then 

you first have to determine if W even qualifies as a subset of V. For example, 

here’s a set of 2 × 1 vectors, A, where the pairs, x and y, represent all the 

points in the coordinate plane and x and y are real numbers.

Set B is a subset of A, because B contains all the points in the coordinate 

plane that have a y-coordinate of 0. Another way of describing the points rep-

resented in B is to say that they’re all the points that lie on the x-axis.
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Building a subset with a rule
It’s easy to see, with sets A and B, that B is a subset of A. When you have 

just one vector and one format to look at, you easily spot the relationship 

between all the vectors in the two sets.

Now think about a new set; I’ll name the set C. I don’t show you all the ele-

ments, in C, but I tell you that C is spanned by the vectors in the set D, shown 

here:

 Given a set of vectors {v
1
, v

2
, . . . , v

k
}, the set of all linear combinations of 

this set is called its span. (You find lots of information on the span of a set in 

Chapter 5.)

What do the vectors in set C look like? They’re also 3 × 1 vectors, and they’re 

all linear combinations of the vectors in set D. For example, two vectors from 

set C — c
1
 and c

2
 — are shown here (with linear combinations that produce 

those vectors):

Putting the two vectors c
1
 and c

2
 in a set E, I produce a subset of set C; E con-

tains two of the vectors that are in set C.

In general, if C is the set of vectors created by the span of set D, then you 

create any vector in C by writing a linear combination using a
1 
and a

2
 as mul-

tipliers. The elements of the resulting vector in C are c
1
, c

2
, and c

3
.
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The vectors in C do have a particular format. The second element, c
2
, is always 

equal to 0. Also, since a
1
 + a

2
 = c

1
 and a

2
 = c

3
, you always have a relationship 

between the first and third elements and the first multiplier: a
1
 = c

1
 − c

3
.

As it turns out, even though set E is a subset of set C, set E isn’t a subspace 

of C. I show you why in the “Getting spaced out with a subset being a vector 

space” section, later in this chapter.

Determining if a set is a subset
In the previous example, I demonstrate one way to create a subset — con-

structing vectors that belong in the subset. But what if you’re given a set of 

vectors and you need to see if they all belong to a particular subset?

Here I show you two sets. The vectors in set A span a vector space, and set B 

is up for consideration: Is set B a subset of the span of set A?

First, I write an expression for the linear combinations of the vectors in set A 

(which constitutes the span of A).

Now I determine if the two vectors in B are the result of some linear combina-

tion of the vectors in A. Taking each vector separately:

The system of equations on the left, corresponding to the first vector in B, 

has a solution when a
1
 = 4 and a

2
 = −1. (Don’t remember how to solve sys-

tems of equations? Refer to Chapter 4.) So far, so good. But the system of 
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equations on the right, corresponding to the second vector in B, doesn’t have 

a solution. There are no values of a
1
 and a

2
 that give you all three elements of 

the vector. So set B can’t be a subset of the span of set A.

Getting spaced out with a subset 
being a vector space
Earlier, in the “Building a subset with a rule” section, I show a subset of a 

vector space and then declare that even though you have a subset, you don’t 

necessarily have a subset that’s a vector space. A subspace of a vector space 

must not only be a non-empty subset, but it also must be a vector space 

itself.

Set E consists of two vectors and is a subset of the set C that I describe in the 

earlier section.

But set E is not a vector space. For one thing, E is not closed under vector 

addition. (In Chapter 13, I explain what it means to have closure under the 

vector operations.) If you use vector addition on the two vectors in set E, you 

get the following result:

The vector resulting from the vector addition isn’t in the set E, so the set isn’t 

closed under that operation. Also, E cannot be a vector space because it has 

no zero vector. And, as if this weren’t enough to convince you, look at the 

number of vectors in E: You see only two vectors. The only vector space with 

fewer than an infinite number of vectors is the vector space containing only 

the zero vector.

Now I show you an example of a subset of a vector space that is a vector 

space itself — and, thus, a subspace of the vector space. First, consider the 

vector space, G, consisting of all possible 2 × 4 matrices. G is a vector space 

under the usual matrix addition and scalar multiplication.
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Now I introduce you to set H, a subset of G:

I need to show you that H is a subspace of G. To show that H is a subspace, 

all I have to do is show you that, as well as being a subset of G, H is also 

closed under matrix addition and scalar multiplication. I first demonstrate 

the closure using an example, and then I show you the generalized form.

Choosing two random vectors in H, I add them together. Then I multiply the 

first vector by the scalar 3.

With this simple example, it appears that the vectors in the set are closed 

under the vector operations. But, to be sure, I show you the vector addition 

in general.

Because the two matrices are in set H, then h
11

 + h
12

 + h
13

 = h
14

 and k
11

 + k
12

 + 

k
13

 = k
14

. The vector sum of the two matrices has, as its element in the first 

row, fourth column, h
14

 + k
14

. Substituting in the equivalent values, you get

The subset H is closed under vector addition. Likewise, with scalar 

multiplication,
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Checking the relationship between the elements in the first row, you find that 

ch
11

 + ch
12

 + ch
13

 = c(h
11

 + h
12

 + h
13

) = ch
14

. So the subset is also closed under 

the multiplication operation. Therefore, H is a subspace of G.

Finding a Spanning Set 
for a Vector Space

Vector spaces have an infinite number of vectors (except for the vector 

space that contains only the zero vector). You determine if a particular set 

spans a vector space or a subspace of a vector space by determining if every 

vector in the vector space can be obtained from a linear combination of the 

vectors in the spanning set. A vector space usually has more than one span-

ning set. What I show you in this section is how to find one or more of those 

spanning sets.

Checking out a candidate for spanning
The simplest spanning set of a vector space with elements that are matrices 

is the natural basis. In Chapter 7, I talk about natural bases for sets of vectors; 

in this chapter, I expand that discussion to vector spaces in general.

The vector space consisting of all 2 × 2 matrices is spanned by the set of vec-

tors T. T is also a natural basis for the vector space.

But the set T isn’t the only spanning set for all 2 × 2 matrices. Look at set U.
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Writing a general linear combination of the matrices in set U,

I now write the system of equations associated with the elements in the 

matrices after multiplying by the scalars.

Solving for the values of the scalars (each a
i
) in terms of the elements of 

the 2 × 2 matrix, I find that any 2 × 2 matrix can be formed. Once I’ve chosen 

the elements of the matrix I want, I can write a linear combination of the 

matrices in U to create that matrix. So set U is also a spanning set for the 2 × 

2 matrices.

Putting polynomials into the spanning mix
Another type of vector space involves polynomials of varying degrees. The 

symbol P2 represents all polynomials of degree 2 or less. And the standard 

spanning set of such a vector space is {x2, x, 1}.

 A polynomial is a function written in the form:

 f(x) = c
n
xn + c

n
-
1
xn-1 + . . . + c

1
x1 + c

0
 

where each c
i
 is a real number and each n is a whole number.

Another spanning set for P2 is the set R = {x2 +1, x2 + x,x + 1}. R isn’t the only 

spanning set for P2, but I show you that R works by writing the linear com-

binations of the elements of R and determining how they create a second-

degree polynomial.
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If the coefficients and constant of the polynomial are c
1
, c

2
, and c

3
, as shown, 

then those coefficients and their relationship with the scalar multiples are

Solving for the values of the scalars,

For example, the linear combination necessary to write the second degree 

polynomial 5x2 +2x + 1 is found as follows:

Substituting into the equation involving the scalar multiples,

Skewing the results with a 
skew-symmetric matrix
A square matrix is called skew-symmetric if its transpose exchanges each ele-

ment with that element’s opposite (negative). You create the transpose of a 

square matrix by exchanging elements on the opposite side of the main diag-

onal. And the opposite of a matrix has each element changed to the opposite 

sign. (Turn to Chapter 3 if these procedures seem strange to you; I cover 
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matrices in great detail there.) This skew-symmetric matrix takes a bit of each 

process, transposing and negating, to produce a new matrix.

 The properties of a skew-symmetric matrix A are

 ✓ A is a square matrix.

 ✓ The main diagonal of A is all 0s.

 ✓ The transpose of A is equal to the opposite of A, AT = −A.

 ✓ For every element in A, a
ji
 =−a

ij
.

Here’s an example of a 4 × 4 skew-symmetric matrix:

The set of all 4 × 4 skew-symmetric matrices is a subspace of the vector 

space of all 4 × 4 matrices. If you’re so inclined, you can easily show that the 

set exhibits closure under addition and scalar multiplication. To create a 

spanning set for the skew-symmetric matrices, first consider a generalized 

format for the skew-symmetric matrix:

Here are the six scalar multiples and their respective matrices as linear 

combinations. The six matrices make up a spanning set for the 4 × 4 skew-

symmetric matrices.
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Defining and Using the Column Space
The column space of a matrix is the set of all linear combinations of the col-

umns of the matrix. The column space of a matrix is often used to describe a 

subspace of Rm, when a matrix has dimension m × n.

For example, consider the matrix A, which has dimension 3 × 4. The column 

space for matrix A consists of four 3 × 1 vectors. And the four vectors consti-

tute a spanning set.

The notation Col A means column space of matrix A, and Span { } means that 

the vectors are a spanning set. Another way to describe the column space 

of matrix A is to name the columns vector a
1
, a

2
, a

3
, . . . and write Col A = 

Span{a
1
, a

2
, a

3
, . . . }.

Because Col A is the set of all the linear combinations of the column vectors 

ai, you can assign x to be some vector in R
n
 and describe the resulting vector, 

b, as a product of the column space and x.

 Col A = Span{a
1
, a

2
, a

3
, . . .} = {b: b = Ax}.

If a vector b is in Col A, then b is the result of a linear combination of the 

column vectors in A. For example, I look at matrix A, and want to determine if 

vector b, shown here, is in Col A.
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In other words, I need to find a linear combination of the column vectors that 

results in b.

To solve for the elements (each x
i
), I use an augmented matrix and do row 

reductions. (A little rusty on solving systems of equations using augmented 

matrices? Just refer to Chapter 4, and you’ll get a full explanation.)
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The row reductions leave the following relationships: x
1
 + x

4
 = 3, x

2
 − x

4
 = −4, 

and x
3
 − x

4
 = 3. Many different combinations of values can be used to create 

the vector b from the column vectors. For example, if I choose to let x
4
 = 1, I 

get x
1
 = 2, x

2
 = −3, and x

3
 = 4. Or I could let x

4
 = −2 and get x

1
 = 5, x

2
 = −6, and 

x
3
 = 1. Here are the two linear combinations — and you can find many, many 

more.

Earlier, I show you how to determine if a particular vector is in Col A by writ-

ing the general linear combination and solving for the necessary multipliers. 

In terms of the matrix A and vector x, I essentially solved Ax = b. With so 

many possibilities for x, let me create a format or pattern for all the possible 

solutions when you’re given a particular vector b to create.

The elements of a vector b are b
1
, b

2
, and b

3
. I still need the same linear com-

binations of the vectors to create a desired vector.

Now, going through all the same row operations as I did for the previous 

example and using the general elements for vector b,
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Don’t be put off by all the fractions. You’ll still have combinations of numbers 

that result in integers for the end results. I’ll choose wisely when showing 

you the rest of the story.

First, though, look at the results of the row reductions in terms of the rela-

tionships between the multipliers in the linear combinations.
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The variable x
4
 appears in each equation. Replace the x

4
 with the constant k. 

After a vector has been chosen to be created, I can let k be any real number, 

substitute it into the equations, and produce the desired linear combinations.

For example, you need the linear combinations necessary to create the vector:

Substituting the elements of the vector into the equations:

Now, letting k be the constant value 4 (I’ve just chosen a number at random), 

you get values for the multipliers in the linear combination.

You’ll get the same result, no matter what you choose for k.
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Connecting Null Space 
and Column Space

I talk about a column space in the preceding section. And now I get to intro-

duce you to yet another designation for interaction with a matrix: null space.

 The null space of a matrix A is the set of all the vectors, x
i
, for which Ax = 0. 

The notation for the null space of A is Nul A.

You may recognize the equation Ax = 0 as being a homogeneous system. (If 

this doesn’t sound familiar, refer back to Chapter 7.)

In the “Defining and Using the Column Space” section, earlier, I show you how 

to find linear combinations that produce a particular vector. What’s special 

about this section is that vector x produces the zero vector when multiplied 

by A. To find a null space, you isolate all the vectors x
i
 so that Ax produces 

the zero vector. I will be using linear combinations with the elements of x.

For example, consider the matrix A and vector x. I picked x because it’s in 

the null space of matrix A.

The vector x is in Nul A, because Ax is the zero vector.

The null space is a set of vectors. The vectors usually have a particular format 

and are described in terms of the basis for the set. For example, here’s matrix 

B and a general format for a vector x, which is in Nul B.
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For this particular matrix B, the vectors in Nul B are all of the form:

So the basis for Nul B is the single 3 × 1 vector of 1s and a −1. For example, if 

you let k be the number 3, then you have:



272 Part IV: Involving Vector Spaces 



Chapter 15

Scoring Big with Vector 
Space Bases

In This Chapter
▶ Determining alternate bases for vector spaces

▶ Reducing spanning sets to bases

▶ Writing orthogonal and orthonormal bases for vector spaces

▶ Finding the scalars when changing bases

In Chapter 14, I discuss subspaces of vector spaces and spanning sets for 

vector spaces. In this chapter, you find topics from many earlier chapters 

all tied together with a common goal of investigating the bases of vector 

spaces. Of course, I refer you back to appropriate chapters, in case you need 

a little nudge, encouragment, or review.

So, what more can be said about the basis of a vector space? My answer: 

plenty. Vector spaces usually have more than one basis, but all the bases of 

a vector space have something in common: The bases of a particular vector 

space all have the same dimension. Also, a vector space can have orthogonal 

bases and orthonormal bases. And then you can switch bases (like a baseball 

player?) by adjusting the scalar multipliers.

It’s important to be able to work with a particular vector space in terms of 

your choice of the kind of basis. The applications work better when you can 

use a simpler, but equivalent, set of vectors — the circumstances dictate 

the format that you want. In this chapter, I acquaint you with options for the 

basis of a vector space.
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Going Geometric with Vector Spaces
Some lines and planes are subspaces of Rn. One reason that I discuss lines 

and planes at this time is that I can show you, with a sketch, what a basis 

looks like.

Not all lines and planes form vector spaces, though. If I limit the discussion to 

just those lines and planes that go through the origin, then I’m safe — I have 

vector spaces.

Lining up with lines
The slope-intercept form of the equation of a line is y = mx + b. The x and y rep-

resent the coordinates x and y as they’re graphed on the coordinate plane. 

The m represents the slope of the line, and the b represents the y-intercept. 

(If you’re not familiar with this equation, brush up on the basics of algebra 

with Algebra For Dummies, published by Wiley.)

The general vector equation of a line is written as follows:

where the 2 × 1 vectors represent the points (x,y) on the coordinate plane. In 

Figure 15-1, I show you the vector representations for two different lines: y = 

2x + 3 and y = −2x.

 

Figure 15-1: 
Lines are 
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by the sum 
of vectors.
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The two lines I show are of two different types. The first type, represented by 

the y = 2x + 3, are the lines that are not vector spaces. The second type, repre-

sented by y = −2x, are those lines that are vector spaces. The main difference 

between the two lines is the constant value of 3 that is added to the first equa-

tion. By adding the constant, you can no longer write a spanning set — and 

then a basis — for the points on the line.

So, lines on the coordinate plane that are vector spaces are spanned by all 

the linear combinations (multiples, in this case) of the real numbers, x, multi-

plying the following 2 × 1 vector:

And this span is a basis. Actually, any scalar multiple of the vector can also 

form a basis.

Providing plain talk for planes
A plane is represented by a flat surface. In geometry, planes extend infinitely 

in all directions, determined by three distinct (the points are all different), 

non-collinear points (only two points at a time share the same line — they 

don’t all three lie on the same line).

As with lines, only planes passing through the origin constitute vector 

spaces. The planes of a vector space are spanned by two nonparallel vectors. 

Here’s the general vector equation of a plane:

To show you an example of a plane with a vector equation and graph, I’ll 

choose two vectors to create a plane — one vector ends behind the vertical 

yz plane, and the other vector ends in the first, front octant:
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Figure 15-2 shows a plane described by those vectors v
1
 and v

2
. Try to imag-

ine the plane extending in all directions from the flat surface defined by the 

vectors. When the vectors used are linearly independent, you have a plane. 

If the vectors are not linearly independent, you have a single line through the 

origin.

 

Figure 15-2: 
The plane 

extends 
in all 

directions.
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Creating Bases from Spanning Sets
All bases of vector spaces are spanning sets, but not all spanning sets are 

bases. The one thing that differentiates spanning sets from bases is linear 

independence. (I talk about linear independence in greater detail in Chapters 

7 and 14.) The vectors in a basis are linearly independent. You can have more 

than one basis for a particular vector space, but each basis will have the 

same number of linearly independent vectors in it. The number of vectors in 

the basis of a vector space is the dimension of the vector space. The basis of 

a vector space has no redundancy — you don’t have more vectors than you 

need.

 If you have a vector space with a basis containing n vectors, then any subset 

of the vector space with more than n vectors has some linearly dependent 

vectors in it.
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In this section, I show you a spanning set with too many vectors — some are 

linear combinations of the others. I then show you how to delete the redun-

dant vectors and create a span for the vector space.

Consider the spanning set, S, with five 4 × 1 vectors. S = {s
1
, s

2
, s

3
, s

4
, s

5
}. The 

span of S is a subspace of R4.

The vectors of S are linearly dependent. Writing the augmented matrix for the 

relationship a
1
s

1
+ a

2
s

2 
+ a

3
s

3
 + a

4
s

4
 + a

5
s

5 
= 0 and reducing to echelon form (I 

don’t show all the steps — just the beginning and end), you get

From the echelon form, you get the following relationships between the vari-

ables: a
1
 = 2a

4
, a

2
 = −5a

4
 + 2a

5
, and a

3
 = 2a

4
 + a

5
. If the vectors were linearly 

independent, then the only solutions making the equations in the system 

equal to 0 would be for each a
i
 to be 0. As you see, with the relationships I 

found in the echelon form, you could make a
3
 = 0 if a

4
 = 1 and a

5
 = −2. Other 

such combinations arise, too. In any case, the vectors are linearly dependent 

and don’t form a basis.

Okay, you say, I’ve made my point. So how do we eliminate enough vectors 

to do away with linear dependency but keep enough to form a basis? Here’s 

the plan:

 1. Write the vectors in a 4 × 5 matrix.

 2. Change the matrix to its transpose.

 3. Row-reduce the transposed matrix until it’s triangular.

 4. Transpose back to a 4 × 5 matrix.

 5. Collect the nonzero vectors as the basis.
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If you need a refresher on transposing matrices and triangular matrices, refer 

to Chapter 3.

So, writing the original vectors from S in a single matrix and then writing the 

transpose, you get:

Now, you perform row reductions:

Next, you transpose the last matrix:
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You collect the nonzero columns as vectors and put them in a set Z. The vec-

tors shown in set Z are a basis for the subset S.

 The set Z isn’t the only basis; there are many different bases possible.

Making the Right Moves 
with Orthogonal Bases

When you have 2 × 1 vectors that are orthogonal, another way of describing 

the relationship between the two vectors is to say that they’re perpendicular. 

In Chapter 2, I show you how to check for orthogonality of vectors by finding 

their inner product. And, just to remind you about vectors being perpendicu-

lar or orthogonal, I offer the following:

 Two vectors u and v are orthogonal if their inner product, uTv, is equal to 0.

The two vectors u and v that I show here are orthogonal. Graphing vector u on 

the coordinate plane, it has its point in the second quadrant. At right angles to 

vector u is vector v, with its point in the third quadrant. (In Chapter 2, you see 

a sketch of two perpendicular vectors.) The inner product is, of course, 0.

You aren’t limited to 2 × 1 vectors or even 3 × 1 vectors when it comes to 

orthogonality. Even though the vectors can’t be represented graphically, the 

vectors are still orthogonal if the inner product is 0. For example, consider 

the two vectors w and z:
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In fact, w and z have many other vectors that are orthogonal to either one or 

both of them.

 An orthogonal set is a set of vectors in which each pair of vectors is orthogonal 

(every vector is orthogonal to every other vector in the set). For example, the 

set P is orthogonal. Each pair of vectors has an inner product of 0.

So what good are orthogonal sets of vectors? They’re very helpful when 

working with various bases of vector spaces.

 An orthogonal set is linearly independent, as long as the set doesn’t contain the 

0 vector. Furthermore, an orthogonal set containing n vectors is a basis for Rn.
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Creating an orthogonal basis
A vector space can have more than one basis. And, an especially useful basis 

of a vector space is its orthogonal basis. To create an orthogonal basis from 

an existing basis, you use the Gram-Schmidt orthogonalization process.

 If a subspace, W, has a basis consisting of the vectors {w
1
, w

2
, w

3
, . . .}, then an 

orthogonal basis for W, U = {u
1
, u

2
, u

3
, . . .}, is found with the following:

Using this formula in the process, the number of terms in the computation of 

a particular vector is one more than for the previous vector. The computa-

tions can get pretty hairy, but computers can come to the rescue if needed. 

You can use a spreadsheet and enter the formulas; it’s easier to keep track of 

everything with a computer program than with a calculator. The variable p in 

the formula represents the dimension (number of vectors) in the subspace.

Here’s how to create an orthogonal basis from the given basis of a set, start-

ing with set W, a basis for R3.

According to the Gram-Schmidt process, the first vector in the orthogonal 

basis is the same as the first vector in the given basis. I now apply the pro-

cess to find the other two vectors.
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Whew! Now, to make future computations easier, multiply the second vector 

in U by 2 and the third vector by 3 to change all the elements to integers.

Using the orthogonal basis to 
write the linear combination
One advantage of the orthogonal basis is that you have an easier task when 

writing a linear combination of a particular vector from the vectors in a set. 

You choose your vector, you line up the vectors in your orthogonal basis, 

and then you plug values into a formula for finding the scalar multiples for 

each vector in the basis.
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If the vectors {u
1
, u

2
, u

3
, . . .} are the orthogonal basis for some subspace U, 

then a vector v belonging to U is written as the linear combination:

v = a
1
u

1
 + a

2
u

2
 + a

3
u

3
 + . . . where

For example, using the orthogonal basis U, I determine the scalars needed to 

write the vector v as a linear combination of the vectors in U.

Neato! Makes a great case for orthogonal bases!

Making orthogonal orthonormal
Just when you thought it couldn’t get any better, I step in to add to your rep-

ertoire by showing you one more process or procedure to change the vectors 

of a basis. An orthonormal basis consists of vectors that all have a magnitude 

of 1. (I discuss magnitude in greater detail in Chapter 2.)

 The magnitude of a vector, designated ||v|| is the square root of the sum of the 

squares of the elements of the vector.
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For example, the magnitude of vector w, shown here, is 7.

In “Creating an orthogonal basis,” earlier in this chapter, I show you how to 

take any old basis and change it to an orthogonal basis. Now I go one step 

further and change an orthogonal basis to an orthonormal basis — all the 

vectors in the basis have magnitude 1.

The process needed to change to an orthonormal basis is really relatively 

simple. You just multiply each vector in the orthogonal basis by the recipro-

cal of the square root of its inner product. (Actually, the words describing 

the multiplier are worse than the actual number.)

 To change each vector v
i
 to a vector with magnitude 1, multiply each v

i
 by

So, to change the orthogonal basis U to an orthonormal basis:

The vectors are orthogonal and the magnitude of each vector is 1.
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Writing the Same Vector 
after Changing Bases

Two bases for R3 are W and U:

You may recognize the two bases if you read the earlier section on orthogo-

nal bases. The set U contains the vectors of an orthogonal basis.

Because both sets W and U are bases for R3, you can write any 3 × 1 vector 

as a linear combination of the vectors in each set. For example, the vector v 

shown here is written as linear combinations of the vectors:

You may be a bit skeptical about the scalar multiples for the vectors in U, but 

go ahead, check it out! Skeptical or not, though, you’re probably wondering 

where in the world those multipliers came from. The scalars here aren’t from 

the formula in “Using the orthogonal basis to write the linear combination.”

One method you use to solve for scalar multiples is to set up augmented 

matrices for each set of vectors, use row reduction, and solve for the multi-

pliers. Another method is to solve for the scalar multiples used in one of the 

sets — those used in a linear combination that you already know — and 

then use a change of basis matrix to compute other scalars for the new set 

of vectors.
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I want to construct a transition matrix that will take the scalars from a linear 

combination of the vectors in W and give me the scalars needed on the vec-

tors of U. I may prefer to use the basis described by the vectors in U for some 

reason or another — maybe because U is the orthogonal basis. You can 

create a transition matrix to go in either direction — U to W or W to U. The 

process for finding the transition matrix from W to U is as follows:

 1. Write an augmented matrix that has the vectors from set U on the left 

and the vectors from set W on the right.

  The augmented matrix represents three different equations involving 

vectors and scalar multiples:

  Each u
i
 represents a vector in set U, and each w

i
 represents a vector in 

set W.

 2. Perform row reductions on the augmented matrix to put the matrix in 

reduced row echelon form.
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  The matrix on the left is the transition matrix that you use to find the 

scalars needed to write the linear combination of the vectors in set U.

  Here’s the transition matrix from W to U:
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  For example, consider the following vector, v. I show the vector and the 

corresponding linear combinations of the vectors in the basis W.

 3. Now I construct a 3 × 1 vector of the scalars used in the linear 

combination.

 4. To find the scalars needed for a linear combination of the vectors in 

the basis U, multiply the transition matrix times the vector of scalars 

from the linear combination of W.

  Using the elements of the resulting matrix as scalar multipliers in the 

linear combination with the vectors in U, the resulting matrix is the 

same.



Chapter 16

Eyeing Eigenvalues 
and Eigenvectors

In This Chapter
▶ Showing how eigenvalues and eigenvectors are related

▶ Solving for eigenvalues and their corresponding eigenvectors

▶ Describing eigenvectors under special circumstances

▶ Digging into diagonalization

The earlier chapters of this book are full of fun things to do with vectors 

and matrices. Of course, they’re fun things! All math is a blast — you 

must think so if you’re reading this book, right?

What I show you in this chapter is how to take some basic mathematical 

ingredients, mix them up judiciously, heat up that mixture, and come up with 

something even more intriguing than before. You take a cup of vectors and a 

pinch of scalars, add a matrix, combine them all up with a determinant and 

a subtraction, and then heat up the mixture with the solution of an equation 

using algebra. I know that you just can’t wait to get a taste of what’s coming, 

so I won’t hold you back any longer.

Putting the mix into a nutshell (something I’m sure many cooks do), what I 

show you in this chapter is how to find special vectors for matrices. When 

performing matrix operations, the matrices transform the vectors into mul-

tiples of themselves.

Defining Eigenvalues and Eigenvectors
Eigenvalues and eigenvectors are related to one another through a matrix. 

You actually start with a matrix and say to yourself, “I wonder what I get 

when I multiply this matrix times a vector?” Of course, if you’re familiar with 

the material in Chapter 3, you immediately say that the result of multiplying a 

matrix times a vector is another vector. What’s involved in this chapter that’s 

so special is the kind of vector that you get as a result.
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Demonstrating eigenvectors of a matrix
Take a look at matrix A and vector v. Matrix A looks like any other 2 × 2 

matrix. It doesn’t appear to be special at all. And vector v is nothing 

spectacular — unless, of course, you’re fond of that particular vector.

Now I perform the multiplication of matrix A times vector v. (You can find 

out how the multiplication works in Chapter 3.)

The multiplication was relatively uneventful, but did you notice something 

about the product? The two elements in the resulting vector are multiples of 

the original vector v.

The curious thing happening here is that multiplying matrix A by the vector 

v gives you the same result that you’d get by just multiplying vector v by the 

scalar 7.

Want to see me do that again? Okay, I can do it once more with a new 

vector, w.

This time, multiplying matrix A times the vector w has the same effect as mul-

tiplying vector w by the scalar −2.

Okay, I’m all out of magic tricks — or, actually, I’m all out of eigenvalues.
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Coming to grips with the 
eigenvector definition
All square matrices have eigenvectors and their related eigenvalues. But 

not all square matrices will have eigenvectors that are real (some involve 

imaginary numbers). When real eigenvalues and eigenvectors exist, the effect 

of multiplying the eigenvector by the matrix is the same as multiplying that 

same vector by a scalar.

 An eigenvector of an n × n matrix is a nonzero vector x such that Ax = λx, 

where λ is some scalar. The scalar λ is called the eigenvalue of A, but only if 

there is a nontrivial solution (one that doesn’t involve all zeros) for x of Ax = 

λx. You say that x is an eigenvector corresponding to λ.

The matrix A in “Demonstrating eigenvectors of a matrix” has two eigenvec-

tors, v and w. The eigenvector v corresponds to the eigenvalue 7, and the 

eigenvector w corresponds to the eigenvalue −2.

Illustrating eigenvectors with 
reflections and rotations
In Chapter 8, I show you matrices that represent rotations and dilations of 

points in the coordinate plane. When you rotate a point about the origin, the 

resulting point is always the same distance from the origin as the original 

point and sometimes a multiple of the original point. Dilating or contracting 

points or segments changes distances — making distances larger or smaller. 

I choose to use these two geometric-type transformations to illustrate 

eigenvectors.

Rotating with eigenvectors
In general, rotations of points about the origin are performed using the fol-

lowing 2 × 2 matrix as the linear operator:

If you let θ be π (180 degrees), then you get the matrix:
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A rotation of 180 degrees takes points in a quadrant to the opposite quadrant 

and reverses the signs of the coordinates. Rotating a point that lies on one of 

the axes by 180 degrees results in another point on the same axis — but on 

the other side of the origin. For example, I multiply the matrix for a rotation 

of 180 degrees times vectors representing the points (3,4), (−2,7), (−5,−2), and 

(0,3).

Each resulting vector is a multiple of the original vector, and the multiplier 

is the number −1. This particular transformation works on any 2 × 2 vector, 

so, technically, for the matrix that performs 180-degree rotations, any vector 

representing a point on the coordinate plane is an eigenvector with an eigen-

value of −1. In Figure 16-1, I show you the four original points and their corre-

sponding points under a rotation of 180 degrees.

 

Figure 16-1: 
Points and 
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180 degrees.
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Dilating and contracting with eigenvectors
Two other related types of geometric transformations are dilations and con-

tractions. In Chapter 8, I show you how these transformations work. In this 
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section, I show you how these transformations are related to eigenvectors 

and eigenvalues.

Consider the following matrix and what happens when it multiplies three vec-

tors that represent coordinates in the plane.

In Figure 16-2, I show you the original three points — all connected with seg-

ments. Then I connect the resulting points with segments.

 

Figure 16-2: 
The triangle 
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with the 
dilation.
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Each side of the new triangle is twice that of the original triangle, which is 

no surprise, because each coordinate doubled in size. Also, each new point 

is twice as far from the origin as the original point. The matrix represents a 

dilation of 2 (which is also the eigenvalue). Using a number between 0 and 1 

instead of the 2 in the matrix would result in a contraction. In any case, the 

matrix performs the operation on any vector representing a point in the 

coordinate plane.
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Solving for Eigenvalues and Eigenvectors
The eigenvectors of a matrix are the special vectors that, when multiplied by 

the matrix, result in multiples of themselves. An eigenvalue is a constant mul-

tiplier that is associated with the vector that gets multiplied.

A process used to determine the eigenvalues and corresponding eigenvec-

tors of a matrix involves solving the equation: det(A − λI)x = 0. You solve for 

the values that λ assumes to make the determinant of a matrix be equal to 0. 

The matrix whose determinant is used is formed by subtracting the multiple 

of the identity matrix from the target matrix, A. Let me put all this in steps to 

explain it better.

 To solve for the eigenvalues, λ
i
, and corresponding eigenvectors, x

i
, of n × n 

matrix A, you:

 1. Multiply an n × n identity matrix by the scalar λ.

 2. Subtract the identity matrix multiple from the matrix A.

 3. Find the determinant of the matrix of the difference.

 4. Solve for the values of λ that satisfy the equation det(A − λI) = 0.

 5. Solve for the vector corresponding to each λ.

Determining the eigenvalues 
of a 2 × 2 matrix
In this section, I show you how to find eigenvalues and corresponding eigen-

vectors using, first, a 2 × 2 matrix and, then, a 3 × 3 matrix.

For this example, start with matrix A.

 1. Multiply the 2 × 2 identity matrix by the scalar λ.
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 2. Subtract the multiple of the identity matrix from matrix A.

 3. Find the determinant of the matrix found in Step 2 by computing the 

difference of the cross-products.

  If you don’t remember how to compute determinants, turn to Chapter 10.

 4. Solve for the values of λ satisfying the equation found by setting the 

expression equal to 0.

  The eigenvalues for matrix A are 8 and −2.

 5. Solve for the corresponding eigenvectors.

  Begin with λ = 8, and replace each λ in the difference matrix with an 8.

Now you essentially solve the matrix equation Ax = 0 for the x values. 

Performing a row reduction, the row of nonzero elements is used to form the 

equation −x
1
 + 3x

2
 = 0 or that x

1
 = 3x

2
. This relationship describes the eigen-

vector corresponding to the eigenvalue of 8.
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So, when the eigenvalue is 8, the product of matrix A and the corresponding 

eigenvector is equal to 8 times the eigenvector.

Similarly, when determining the eigenvector corresponding to the 

eigenvalue −2,

and multiplying the eigenvector by matrix A, you get a −2 multiple of the 

vector.
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Getting in deep with a 3 × 3 matrix
At first glance, you might not think there’d be too much more to do when 

solving for eigenvalues of a 3 × 3 matrix. After all, that’s just one up from a 

2 × 2 matrix. Well, I hate to burst your bubble, but unless the matrix you’re 

working with contains a fair amount of 0s, the algebra involved in solving the 

equation found from the determinant can be a bit of a challenge.

For example, here are a relatively well-behaved 3 × 3 matrix A and the first 

steps toward solving for the eigenvalues:

Now, evaluating the determinant of the difference matrix, I use the technique 

shown in Chapter 10:

Yes, I know that I skipped all the lovely algebra steps and didn’t show you the 

product of the three binomials and the distribution of factors over the other 

terms. I thought you’d prefer to ignore all the gory details and get to the 

resulting polynomial. So, assuming that it’s okay with you, I now factor the 

polynomial after setting it equal to 0.

 How did I factor the polynomial? I used synthetic division. If you’re not famil-

iar with synthetic division, check out Algebra II For Dummies (Wiley).
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The eigenvalues are 1, 2, and 3. Solving for the corresponding eigenvectors, I 

start with λ = 1.

Performing row reductions on the resulting matrix, I get

From the rows of the matrix, I write the equations x
1
 − x

3
 = 0 and x

2
 − x

3
 = 0. 

The vector corresponding to the relationships between the elements is

The corresponding eigenvectors for λ = 2 are found as follows. I’ve left out 

steps in the row reduction, but feel free to perform them yourself for the pure 

pleasure of it.

The equations I get from the final matrix are x
1
 − x

3
 = 0 and 3x

2
 − 2x

3
 = 0. From 

the equations, I get the eigenvector:
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I multiplied each element by 3 to get rid of the fraction.

Finally, when λ = 3, I get

The equations from the matrix are x
1
 − 3/4 x

3
 = 0 and x

2
 − 1/4 x

3
 = 0. The result-

ing eigenvector is

As you can see, the computations and algebra get more difficult as the size 

of the matrix increases. Thank goodness for modern technology. However, 

some n × n matrices have eigenvalues that are easy to determine; the matri-

ces in point are the triangular matrices.

Circling Around Special Circumstances
Eigenvalues of matrices are determined either by guessing or by using a 

tried-and-true method. Some nice properties of the eigenvalues of matrices 

and various related matrices make the computations easier and, sometimes, 

unnecessary. (One of the properties, involving powers of matrices, is dis-

cussed even further in “Getting It Straight with Diagonalization,” later in this 

chapter.)
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Transforming eigenvalues 
of a matrix transpose
One property of matrices and their respective eigenvalues is that you don’t 

change those eigenvalues when you transpose the matrix. In Chapter 3, I 

define a matrix transpose for you and show you examples. But just to define 

transposition quickly, transposing a matrix means to switch all the rows and 

columns (row one becomes column one, and so on).

 The eigenvalues of matrix A and matrix AT are the same.

So, if you know the eigenvalues of matrix A, shown here, then you know the 

eigenvalues of matrix AT.

Just to demonstrate this property with the general 3 × 3 matrices, here are 

the terms in the respective difference determinants:

The values of the determinants are the same. The same holds true, of course, 

for any n × n matrices.
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Reciprocating with the 
eigenvalue reciprocal
A matrix doesn’t really have a reciprocal. (The reciprocal of a number is 

equal to 1 divided by the number.) But a matrix may have an inverse, which 

is another matrix that, when it multiplies the first matrix, gives you an iden-

tity matrix. I go into a lot more detail about matrices and their inverses in 

Chapter 3. A number or scalar multiple does have a reciprocal (assuming that 

you aren’t silly enough to have the scalar be 0). So, how do inverses of matri-

ces and reciprocals of scalars tie together? I’m here to show you how.

 If matrix A is nonsingular (has an inverse) and λ is an eigenvalue of matrix A, 

then 1/λ is an eigenvalue of the inverse of matrix A, matrix A−1. For example, 

here’s a matrix A:

And here are matrix A’s eigenvalues: λ = 2, λ = 5, λ = −1.

The inverse of matrix A is

And the eigenvalues of A−1 are λ = 1/2, λ = 1/5, and λ = −1.

Just to demonstrate, I show you the eigenvectors corresponding to the eigen-

value 2 for matrix A and the eigenvalue corresponding to 1/2 for matrix A−1.
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Notice that the eigenvectors corresponding to λ = 2 and λ = 1/2 are the same.

Triangulating with triangular matrices
In Chapter 3, you see many different ways of describing matrices. Matrices 

can be square, triangular, zero, identity, singular, nonsingular, and so on. 

Many matrices fit into more than one classification.

The matrices I discuss in this section are all square and triangular or square 

and diagonal — essentially, they’re triangular or diagonal. Now, if this was a 

geometry discussion, you could tell me that being both square and triangular 

just doesn’t happen. Aren’t you glad this isn’t geometry?

 A square matrix has an equal number of rows and columns.

A triangular matrix has all 0s either above or below the main diagonal. If all 

the elements are 0s above the main diagonal, then the matrix is lower trian-
gular; if the 0s are all below the main diagonal, the matrix is upper triangular 
(you’re identifying where the nonzero elements are).

Now let me show you something nice about triangular matrices. I start with 

the upper triangular matrix A and the lower triangular matrix B:
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What’s so special about triangular matrices is their eigenvalues.

 The eigenvalues of a triangular matrix all lie along the main diagonal.

So, if you look at matrices A and B, you see that the eigenvalues for matrix A 

are λ = 1, 2, and −3, and the eigenvalues for matrix B are λ = 3, −4, and 2. Are 

you skeptical? I’ll give you a quick demonstration using matrix A to show why 

the rule works for triangular matrices. I set up the matrix A − λI to find the 

determinant of that difference. Then I find the determinant.

Because of all the 0 elements in strategic places, the only part of the deter-

minant that isn’t 0 is the product along the main diagonal. Set that product 

equal to 0, and you get eigenvalues equal to the elements along that diagonal. 

The property is true for all sizes of square matrices.

Powering up powers of matrices
In various applications involving probability models and manufacturing, you 

work with powers of square matrices. You solve problems by squaring the 

matrix or raising it to the third or fourth power or even higher. I show you, 

first, the relationship between the eigenvalues of a square matrix and the 

eigenvalues of powers of square matrices. Then, in “Getting It Straight with 

Diagonalization,” I show you how to make powering up matrices a tad easier.

 If A is an n × n matrix and λ is an eigenvalue of A, then λk is an eigenvalue of 

matrix Ak (for k = 2, 3, 4, . . .). For example, matrix A shown here has eigenval-

ues of 7 and −2.
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I raise A to the third power and solve for the eigenvalues of the resulting 

matrix:

The eigenvalues of A3 are 343 and −8, which are the cubes of 7 and −2, 

respectively.

Thank goodness for technology. I was able to raise the matrix A to the third 

power with relative ease using my graphing calculator. You may be wonder-

ing if there’s an alternative for those who aren’t as lucky to own a handy-

dandy calculating device. I’m so pleased that you’re interested, because the 

answer is found in the next section on diagonalization!

Getting It Straight with Diagonalization
A diagonal matrix is a square matrix in which the only nonzero elements lie 

along the main diagonal. For example, here are three diagonal matrices in 

three different sizes:

One of the nicest things about diagonal matrices is the ease of computations. 

In particular, raising diagonal matrices to various powers is achieved by 

just raising each element along the main diagonal to that power. So, raising 

matrix A to the fourth power,
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If you only had to raise diagonal matrices to higher powers in applications, 

then you’d be set. The next best thing, though, is that you can often change a 

square matrix into a diagonal matrix that’s similar to that matrix and perform 

computations on the new matrix. The powers of a diagonal matrix are so 

much easier to find than powers of other matrices.

Also, as in a triangular matrix, the eigenvalues of a diagonal matrix lie along 

the main diagonal. So you can construct a matrix similar to a given matrix 

once you’ve found the eigenvalues of the original matrix.

 Two matrices A and B are said to be similar if matrix B is equal to the product 

of the inverse of a nonsingular matrix S times matrix A times the matrix S: B = 

S−1AS.

 If two matrices are similar n × n matrices, then they have the same 

eigenvalues.

So, where all this business of diagonal matrices and similar matrices is going 

is that if you want a high power of a matrix, you try to find a similar matrix 

that’s a diagonal matrix. You find the power of the diagonal matrix and then 

change the answer back into the original form.

For example, if A is an n × n matrix and if B = S−1AS where B is a diagonal 

matrix, then after raising B to the power k, you can use the same matrix S and 

its inverse and recover the power in terms of A with Ak = SBkS−1.

A matrix is diagonalizable (you can find a similar matrix that’s diagonal) only 

if the matrix has eigenvectors that are linearly independent. I’ll show you 

how to use the eigenvectors of a matrix to form a similar diagonal matrix.

The matrix A is diagonalizable, because its two eigenvalues, λ
1
 = 1 and λ

2
 = 6, 

have corresponding eigenvectors, u
1
 and u

2
, which are linearly independent.

Letting the vectors u
1
 and u

2 
form the columns of vectors S, I find the 

inverse, S−1.
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If you need to review how to find the inverse of a matrix, go to Chapter 3. 

Now, finding the product S−1AS, I first multiply matrix A by S and then the 

inverse of S by the product. I’ll call the new matrix B.

The resulting vector should come as no surprise if you believed me that the 

two similar vectors, A and B, had the same eigenvalues. The eigenvalues of 

the diagonal matrix lie along that main diagonal. The goal now is to find the 

power of matrix A using matrix B.

So first I perform an operation on matrix B: I raise B to the fourth power.

And next I recover the original matrix A, or rather, the fourth power of A, 

with A4 = SB4S−1.
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Here’s a 3 × 3 matrix A with eigenvalues λ
1
, λ

2
, and λ

3
 and the corresponding 

eigenvectors, u
1
, u

2
, and u

3
. I want to raise A to the sixth power.

Using the eigenvalues of A, I write a matrix B, similar to A, by creating a 

diagonal matrix with the eigenvalues down the diagonal. Then I write matrix S 

using the eigenvectors and determine S−1.

I raise matrix B to the sixth power and then find A6 = SB6S−1.
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Part V
The Part of Tens



In this part . . .

An X stands for ten and it also marks the spot. The 

Part of Tens includes lists of X related items, all 

given for you to put in your top X list. Whether it’s calcu-

lators, Greek letters, or matrix applications, you can have 

your pick or take all X of them.



Chapter 17

Ten Real-World Applications 
Using Matrices

In This Chapter
▶ Working with biological and scientific models

▶ Tracking traffic and population movements

▶ Sending secret messages and playing games

In case you were wondering what in the world linear algebra is good for, 

in this chapter I offer ten examples of matrices at work. Of course, my pat 

answer should be that linear algebra is beautiful in its own right and needs no 

convincing for the true believer — but a little application never hurt anyone!

In this chapter, I show you some fairly common applications in very brief 

formats — just enough to convince you.

Eating Right
Diet and nutrition are concerns at every age. You need enough food to keep 

you healthy, but you don’t want to overdo it. Older people need different 

amounts of the various nutrients than younger people and babies do.

Consider a situation where a cafeteria manager uses, on a daily basis, rice, 

macaroni, nonfat dry milk, and wheat bread as a part of the prepared meals. 

In each serving, the rice contains 5 milligrams of sodium, 21 milligrams of 

carbohydrates, and 2 grams of protein. The macaroni contains 1 gram of fat, 

1 milligram of sodium, 28 grams of carbohydrates, and 5 grams of protein. 

The milk contains 1 gram of fat, 535 milligrams of sodium, 52 grams of carbo-

hydrates, and 36 grams of protein. And the bread contains 4 grams of fat, 530 

milligrams of sodium, 47 grams of carbohydrates, and 9 grams of protein. The 

manager has to provide a minimum of 12 grams of fat, 2 grams of sodium, 265 

grams of carbohydrates, and 70 grams of protein for each person each day. 

She doesn’t want to order too little or too much of the different food types.
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So how does she solve this problem? With matrices, of course! She sets up 

an augmented matrix using the nutrients and amounts in each type of food. 

All the amounts are given in terms of grams, so the 530 milligrams becomes 

0.530 grams.

And now, solving for the amounts, the matrix becomes:

In order to supply the minimum daily requirements of the different nutrients, 

the manager needs to serve 0.19 grams of macaroni, 1.03 grams of nonfat dry 

milk, 2.69 grams of bread, and 3.77 grams of rice to each person.

 Refer to Chapter 4 to find out how to simplify an augmented matrix to get the 

solutions of the system.

Controlling Traffic
Have you ever wondered who in the world programmed the traffic lights 

between your home and your business? During a two-month period when I 

was forced to use an alternate route to work, I kept track of the number of 

times I had to stop at the 23 traffic lights between home and work. On aver-

age, I was stopping at about 21 of the lights!

Anyway, I do have an appreciation for what traffic engineers must have to 

go through to keep the traffic moving. Consider Figure 17-1, depicting the 

four main streets in Aftermath City. Each street goes one way, and I show the 

number of cars entering and leaving the downtown area on the four streets 

during a one-hour period in the afternoon.
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Figure 17-1: 
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One way to organize the information is to write equations about what’s hap-

pening at each intersection:

A: 200 + x
4
 = 300 + x

1

B: 500 + x
1
 = 100 + x

2

C: 300 + x
2
 = 800 + x

3

D: 400 + x
3
 = 200 + x

4

Rewriting the equations and placing the coefficients in a matrix makes the 

relationships between the variables more evident.

You find relationships between the amount of traffic on each street in 

between the intersections; the relationships can all be written in terms of 
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what happens on the portion of the street x
4
: x

1
 = x

4
 – 100, x

2
 = x

4
 + 300, and x

3
 

= x
4
 – 200. One possible scenario is to let x

4
 = 200, in which case, x

1
 = 100, x

2
 = 

500, and x
3
 = 0. It’s all in the planning.

 I cover systems of equations and using matrices to solve them in Chapter 4.

Catching Up with Predator-Prey
A common model for the interaction between one species, called the preda-
tor, and another species, called the prey, shows how the number in one cate-

gory affects the other. For example, if there are lots of rabbits available, then 

foxes have plenty to eat and will flourish (grow in number). As the number of 

foxes grows, the number of rabbits will diminish (because they’ll be eaten). 

When there are fewer rabbits, fewer foxes will be able to survive (or will 

move elsewhere). A fine balance serves to keep the fox and rabbit popula-

tions steady.

Just for the sake of argument, let’s assume that rabbits provide up to 70 per-

cent of the diet for the red fox population in a certain area. Also, the foxes eat 

10 percent of the rabbits that are in the area in a one-month time period. If 

there were no rabbits available for food, then 40 percent of the foxes would 

die. And, if there were no foxes in the area, then the rabbit population would 

grow by 10 percent per month. When the rabbits are plentiful, the fox popula-

tion grows by 30 percent of the rabbit population (in hundreds). The transi-

tion matrix shown here describes the interplay between foxes and rabbits.

Here’s how the elements in the matrix are obtained:

Number of Foxes Next Month = 0.60 (Foxes This Month If No Rabbits) + 

0.30 (Rabbits This Month)

Number of Rabbits Next Month = –0.10 (Rabbits This Month If Plentiful 

Foxes) + 1.10 (Rabbits This Month If No Foxes)

Working through the problem, you find more on the evolution of this system 

by solving for eigenvalues and corresponding eigenvalues for the matrix. 

Then, observing what happens over repeated generations, you find that 

both populations tend to grow at 3 percent per month with a ratio of 100 

foxes per 4,600 rabbits. (To find more on eigenvalues and eigenvectors — 

see Chapter 16.)
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Creating a Secret Message
If your hero is James Bond, then you’ve probably dabbled in secret codes 

rather than exploding fountain pens. The simplest way to encrypt a message 

is to let each letter of the alphabet be represented by one of the other letters. 

These codes are fairly easy to decipher (and I practice my skills on these 

Cryptoquotes in the daily newspaper). Matrices add a twist to secret 

messages — making most of them unbreakable.

For example, I want to send a message to my fellow spy saying: Meet me at 
the bridge. I begin by assigning each letter in the message its numerical place 

in the alphabet.

I now break up the message into 3 × 1 vectors, filling in the last element with a 

27 (because the message has only 17 letters, so you can’t fill the last vector com-

pletely). The number 27 is also equivalent to the number 1, so it’ll come out as 

an A. Another option is to use the number 24 (X) to fill in any blank spaces.

Now I encrypt my message by multiplying each vector by a 3 × 3 matrix, A. I 

pick a matrix with a relatively nice inverse, because my fellow spy may have 

to compute the results by hand.
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My fellow spy is expecting a code consisting of positive, two-digit numbers. 

Some of the elements in the vector products are negative, and some have 

three digits. I add or subtract multiples of 26 to each of the elements until I 

get two-digit numbers. When I end up with a one-digit number, such as 8, I 

just put a 0 in front. Then I list all the elements from the vectors in a row.

I send the sequence of numbers to my fellow spy. She has the code-breaker, 

the inverse of the matrix I used to do the encrypting. She breaks up the num-

bers into sets of three two-digit numbers for the vectors. Then she multiplies 

each vector by the inverse matrix.
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Adding or subtracting multiples of 26 to each element until the number is 

between 1 and 26, my fellow spy reads:

The original vectors are re-created (with the last number showing up as a 1 

rather than a 27 for the missing letter).

Saving the Spotted Owl
Several years ago, the news was full of stories of the conflict between the 

loggers in the Pacific Northwest and the threatened extinction of the spotted 

owl. Studies were done regarding the life cycle of the spotted owl and how 

the loss of timberland would affect the number of owls in the area.

The life cycle of spotted owls (which are expected to live about 20 years) 

is divided into three stages: juvenile, sub-adult, and adult. R. Lamberson is 

responsible for one study in which it was determined that, among female 

owls counted each year, the number of new juvenile owls was expected to be 

about 33 percent of the number of adult owls, only 18 percent of the juveniles 

are expected to survive to become sub-adults, 71 percent of the sub-adults 

are expected to become adults, and 94 percent of the adults are expected to 

survive. The transition matrix that models these figures is as follows:
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Multiplying the transition matrix by a vector whose elements are the number 

of juvenile, sub-adult, and adult owls, the expected number of each stage owl 

is determined and long-range predictions are made.

 Matrix multiplication is explained in Chapter 3.

Migrating Populations
Birds migrate, fish migrate, and people migrate from community to commu-

nity or from one part of the country to another. City and community planners 

need to take into account the projected migration of the population as they 

make plans for roads and shopping centers and deal with other infrastruc-

ture issues.

In a particular metropolitan area, it’s been observed that, each year, 4 per-

cent of the city’s population moves to the suburbs and 2 percent of the popu-

lation of the suburbs moves to the city. Here’s a transition matrix reflecting 

these changes:

From the matrix, you see that 96 percent of the people who were in the city 

stayed in the city the next year, and 98 percent of the people who were in the 

suburbs stayed in the suburbs.

You can determine the number of people expected to populate the different 

areas by multiplying by a vector with the current populations. The long-range 

projections are found by raising the transition matrix to various powers. 

According to this model, if the trends stay the same, the populations will 

become pretty stable in about 60 years, with 33 percent of the population 

living in the city and 67 percent living in the suburbs.

Plotting Genetic Code
Genetics affects everyone. From hair color to eye color to height, the genes 

passed along to you from your parents determine what you look like. My 

parents both had brown eyes, but I have two blue-eyed brothers. How does 

that work?
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Just a brief genetics lesson: Brown eyes are dominant, and blue eyes are 

recessive, which means that brown wins over blue. But blue genes can come 

from brown-eyed parents. Eyes come in many different shades, too, so I’m 

going to work with a genetics model that doesn’t have quite so many choices 

of color. (If you’re interested in genetics, you can find all kinds of information 

in Genetics For Dummies, by Tara Rodden Robinson, PhD [Wiley].)

A particular type of flower comes in red, white, or pink. Assume that the 

flowers get only two genes for color. The flowers have the genes RR (red), Rr 

(pink), or rr (white). If both parent flowers are RR (red), then the offspring 

are also red. If one parent is RR (red) and the other Rr (pink), then the result-

ing flowers have half a chance of being RR (red) and half a chance of being Rr 

(pink). In a biology class, you get to map all these out. What I present here is 

a transition matrix showing parent and offspring and the probability that the 

offspring will have a particular color:

According to the matrix, a red flower has a 50 percent chance of having red 

offspring and a 50 percent chance of having pink offspring, if the other parent 

is Rr. A red flower can’t have white offspring. A pink flower has a 50 percent 

chance of having pink offspring, a 25 percent chance of having white offspring, 

and a 25 percent chance of having red offspring.

What about future generations? What is the probability that a red flower will 

have a red grandflower (Sure! Isn’t the offspring of the offspring the grandspring?) I 

show you here the next generation and, also, the generation after 20 more times.

According to the probability matrix, there’s a 12.5 percent chance that the 

offspring of the offspring of a red flower will be white. And look at 20 genera-

tions down the line. The probabilities of the colors all line up at 25 percent 

for red or white and 50 percent for pink.
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Distributing the Heat
Heat sources can come from several different directions. When an object is 

heated on one side, that side tends to be warmer, with cooling temperatures 

observed as you move away from the heat source. Consider the object in 

Figure 17-2 to be a square metal plate or a square room or anything with a 

relatively uniform interior. The numbers on each side indicate the heat being 

applied to that side in degrees Fahrenheit.

 

Figure 17-2: 
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Now, using a mean value property (where you find the temperature at a 

particular point by adding the adjacent temperatures and dividing by the 

number of values used), I write the four equations representing the heat at 

each of the central points:

Simplifying the equations and setting up an augmented matrix, I use row 

operations to solve for the temperatures at the central points:
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The temperatures at x
1
, x

2
, x

3
, and x

4
, respectively, are 48.75, 51.25, 46.25, and 

43.75. Each central point is affected by the two sides it’s closest to and the 

other two central points it’s adjacent to.

 You can find information on solving systems of equations using augmented 

matrices in Chapter 4.

Making Economical Plans
A well-known model for an economy is the Leontief production model. The 

model takes into account the different production arenas of a country, city, 

or area and how they interact with one another. Here I show you a simplified 

version of how the model works.

Consider an economy in which you find three major production sectors: 

agriculture, manufacturing, and service. A production target is set for the 

month: 18 units of agriculture, 20 units of manufacturing, and 24 units of 

service. When producing these units, though, some of the sectors need the 

very products being produced to create this output. In fact, for each unit of 

output, agriculture needs 0.10 units of agriculture, 0.50 units of manufactur-

ing, and 0.15 units of service. The manufacturing sector needs 0.05 units of 

agriculture and 0.15 units of service for each unit produced. And the service 

sector needs 0.10 units of service and 0.40 units of manufacturing.

To find the total number of units of each — the amounts needed for the pro-

duction goals and the amounts needed by each sector to meet these goals, I 

set up an input matrix, A, and a demand vector, d.

To find the total amount of each type needed, x, I solve x = Ax + d, which sim-

plifies to x = (I – A)–1d.
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So it takes 42.05 units of agriculture to create the 18 units in demand and 

what’s necessary to create the units of agriculture, manufacturing, and 

service. Likewise with the other sectors.

Playing Games with Matrices
When you were a kid, you probably played lots of paper games — starting 

with tic-tac-toe — and now you’ve graduated to computer games that tax 

your wits. One particular game can be played on either paper or computer — 

although using the computer is much faster and more accurate. The game is 

called Squares or Magic Squares. It can be played with any size square, but it 

seems challenging enough to me with just a three-by-three grid.

You start with some random pattern of white and black markers on the 

squares and win by changing them to a pattern in which every marker is 

black except the center marker. I show you a possible starting pattern and 

the target pattern in Figure 17-3.

 

Figure 17-3: 
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You might wonder why this game is considered such a challenge. After all, 

you can just change the five markers — four to black and one to white. Here’s 

the catch: When you change one marker, you also have to change two, three, 

or four others. I’ve labeled the squares to describe the legal moves:
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The rules are

 ✓ When you change any corner (a, c, g, or i) you also change each square 

adjacent to that corner:

 • a: a, b, d, e

 • c: b, c, e, f

 • g: d, e, g, h

 • i: e, f, h, i

 ✓ When you change the middle marker on any side, you change all the 

markers on that side.

 • b: a, b, c

 • d: a, d, g

 • f: c, f, i

 • h: g, h, i

 ✓ When you change the center marker, you change the markers above, 

below, left, and right of it, too: b, e, h, d, f.

Now you see the challenge — and why a computer game makes this much more 

efficient. But you can do this without a computer! In fact, any (doable) target 

pattern can always be reached in no more than nine moves. (But there are some 

initial patterns that have no solution — so you’d be switching markers forever if 

you stumbled on one of those. Computer games avoid those nasty types.)

The solution comes from a series of 9 × 1 vectors — the first nine of which are 

put into a 9 × 9 matrix. Each of the nine squares has its own vector based on the 

other squares that are affected when a switch is made on that square. The vec-

tors contain 1s for the squares that are switched and 0s for the squares that are 

changed. I show you the general vector v and the vectors for a, d, and e here:
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Now picture all nine vectors — v
a
, v

b
, . . . v

i
 — put into a huge 9 × 9 matrix. 

And then, imagine finding the inverse of that matrix. Here’s the inverse 

matrix, though, in case you’re in a hurry:

To find the solution — which squares to switch — you create a vector repre-

senting the initial setup and add it to a vector representing the target pattern. 

Then you multiply that inverse matrix times the sum. Using the initial and 

target patterns I showed you at the beginning of this section, here’s the addi-

tion. The 2s mean that you switched twice and are back where you started, 

so they become 0s.
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Now multiply the inverse matrix times the sum:

The 3s that appeared in the product mean three switches, which revert back 

to 1s. The 4s in the product go back to 0s. (In general, odd numbers become 

1s and even numbers become 0s.) It will take just four moves to change the 

initial pattern to the target pattern. Switch b, d, g, and h (and all the squares 

that come with each).



326 Part V: The Part of Tens 



Chapter 18

Ten (Or So) Linear Algebra 
Processes You Can Do 

on Your Calculator
In This Chapter
▶ Graphing lines and finding intersections

▶ Taking the opportunity to do matrix operations

▶ Performing row operations on matrices

▶ Making the calculator round off numbers

G raphing calculators are wonderful instruments. You carry them around 

in your backpack, briefcase, or purse, and you whip them out to do all 

sorts of mundane tasks — things that you just don’t want to waste your brain 

power on.

In this chapter, I show you some graphing capabilities, including how to solve 

a system of linear equations by graphing lines. I also show you several pro-

cesses you can do involving matrices. Finally, I show you how to take a firm 

grip on large numbers and let your calculator round them down to size.

Note: There are way too many calculators on the market for me to be able 

to tell you exactly which button to push on your specific calculator, so I give 

more general instructions. If you’re not familiar with your graphing calcula-

tor, have the user’s manual handy — especially the part showing all the dif-

ferent functions in the drop-down menu of a particular button.

 If you don’t have your manual anymore (just like most of my students!), go 

online. Most calculator manufacturers have helpful Web sites to assist you.
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Letting the Graph of Lines Solve 
a System of Equations

In Chapter 4, I talk about systems of equations and their solutions. I also 

show you how to graph systems of two linear equations on the coordinate 

axes. Here, I show you how to take one of the systems of equations and put it 

into your calculator for a solution.

 To solve a system of two linear equations in two unknowns, do the 

following:

 1. Write each equation in slope-intercept form, y = mx + b.

  This is also the function form where you show that the variable y is a 

function of the variable x.

 2. Enter the two equations in the y-menu of your calculator.

 3. Graph the lines.

  You may have to adjust your screen to make both of the lines appear. In 

particular, you want to see where the two lines cross.

  Some calculators have a Fit button that adjusts the height of the graphs 

to a particular width so you can view both lines at the same time.

 4. Use the Intersection tool.

  You usually have to select the lines, one at a time, as prompted. Then 

you’re invited to make a “guess.” You can use the left-right arrows to 

move the pointer closer to the intersection, if you like.

 5. Press Enter to get the answer.

  You’ll be given both coordinates of the point (both variables x and y).

Now for an example. I want to solve the following system of equations:

Writing the equations in slope-intercept form (Step 1), I get y = −2/3x + 3 and 

y = 4x − 11. I put the first equation in the first position of the y-menu and the 

second equation in the second position (Step 2). Graphing the lines, I find 

that the standard setting (from −10 to +10 in both directions) works just fine 

(Step 3). Figure 18-1 shows you what the graph might look like.
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Figure 18-1: 
The lines 
intersect 

in the first 
quadrant.

 

Using the Intersection tool (Step 4), I’m prompted by the calculator to choose 

the two lines. Some calculators have you check off the equations; other 

calculators have you click on the actual graphs of the lines. I press Enter 

(Step 5) and initiate the finding of the solution. Some calculators give the 

answer as an ordered pair (3,1), and others show x = 3, y = 1. In either case, 

I’ve found the point of intersection of the lines — which corresponds to 

the solution of the system. If my lines have no intersection, then I’ll see 

two parallel lines that never touch. If I try to make the calculator solve the 

parallel system, anyway, I’ll get some sort of error message.

Making the Most of Matrices
Matrix operations are quick and accurate when performed with a graphing 

calculator. You do have some downsides, though: The matrices have to be 

entered into the calculator one element at a time. And then, if you’re working 

with multiple matrices, you have to keep track of what you put where — 

which matrix is which and what you named them. The computations per-

formed on matrices often result in numbers with many decimal places, 

making it hard to see all the elements at one time. You either have to change 

the numbers to fractions or round them off. I show you how to quickly 

and easily round the numbers down for the display in the “Adjusting for a 

Particular Place Value” section, later in this chapter.

To enter a matrix into the calculator, you choose a name. No, Henry isn’t 

an appropriate name in this case. Usually the calculator gives you a choice 

from A, B, C, D, and so on. (How dull.) After choosing a name, you enter the 

dimension of the matrix, such as 2 × 3. Then you enter each element in its 

appropriate place. Now the fun begins.
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Adding and subtracting matrices
You can add or subtract matrices that have the same dimensions. If you try 

to make the calculator add or subtract matrices with different dimensions, 

you’ll get a rude message such as “Are you kidding me?” No, not really. You’ll 

get something more polite such as “ERROR.”

 To add or subtract two matrices with the same dimensions, you do the 

following:

 1. Enter the elements into the two matrices.

  Keep track of which matrix is which, in terms of the elements.

 2. With a new screen, enter the name of the first matrix, insert the opera-

tion symbol (+ or −), and then insert the name of the second matrix.

 3. Press Enter.

Did you think it was going to be something complicated and difficult? Sorry. 

Not this time.

A calculator that I use shows the following for the operation: [A] + [B]. The 

brackets indicate a matrix.

Multiplying by a scalar
When you multiply a matrix by a scalar, you essentially multiply each ele-

ment in the matrix by the same number. Using your calculator to do this task 

saves you from having to perform the same multiplication over and over 

again. And the process is very simple. If you want to multiply matrix A by 2, 

in my calculator you just type in 2*[A] and — voilà! — you get the answer.

Multiplying two matrices together
The hardest part of multiplying two matrices together has to do with the Law 

of Order. No, you don’t call on Sam Waterston. It’s just that when multiplying 

matrices, order matters, and that’s the law! You can multiply a 2 × 3 matrix 

times a 3 × 5 matrix, in that order, but you can’t multiply in the opposite order. 

(In Chapter 3, I go through all the reasons for the rule.) For now, just keep 

track of which matrix is which when multiplying. Your calculator won’t let 

you get away with any switch — you’ll get an error message if you try. But 

prevention is the best way to go.

To multiply a 2 × 3 matrix A times a 3 × 5 matrix B in my calculator, I just type 

in [A]*[B] and press Enter to get the resulting 2 × 5 matrix.
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Performing Row Operations
Many tasks in linear algebra involve vectors and matrices. And, quite often, 

you need to change the format of the matrix to solve a system of equations 

or write a relationship between variables or multipliers. Graphing calculators 

are great for performing operations on matrices, especially when the ele-

ments in the matrices are large and cumbersome or when you have to divide 

by numbers that don’t result in nice integers.

I list many of the most common operations in this section. Note: Not all 

operations may be on every calculator, and some calculators may have more 

operations than these. Your user’s manual is your best guide.

Switching rows
You have a matrix with four rows and would prefer that the fourth row be 

where the first row is. (Maybe a 1 is the first element of the fourth row.) Your 

calculator should be able to do the switch (often called row swap). You’ll 

have a specific script to follow when entering the commands for the row-

switching operation. You’ll have to identify what matrix is to be operated 

on, because you may have several matrices loaded in your calculator. Then 

you’ll have to designate the rows.

For example, on my calculator, I’d type in rowSwap([A],1,4), meaning that I 

want to switch rows 1 and 4 in my matrix A. Of course, I first have to enter 

the matrix and save it as matrix A. Then I have to find the rowSwap com-

mand. In most calculators, you can’t just type in the letters using the alpha-

betical key, you have to find the built-in operation indicating a matrix. Check 

under the matrix button for a drop-down menu involving operations.

Adding two rows together
You add two rows of a matrix to create a different format. You’re usually tar-

geting just one of the elements in the matrix, and all the other elements in the 

rows have to just follow along. For example, in matrix A, I want to add rows 1 

and 3, because the sum of the first elements in those two rows is equal to 0.
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Once you have the sum, you need to determine where you’re going to put it. 

If my goal is to get all 0s below the 1 in the first row, first column, then I want 

the sum of rows 1 and 3 to be placed in row 3.

The calculator entry has to include which matrix you’re working with, which 

rows need to be added together, and where to put the sum. In my calculator, 

I find the matrix operation that adds rows together, and the process I type in 

is row+([A],1,3). The calculator automatically places the sum in row 3, the 

second row named in the script. If you want the sum to be placed in row 1, 

then you use row+([A],3,1).

Adding the multiple of one row to another
If your goal is to have all 0s above and below a particular element in your 

matrix, then it’s peachy if all the elements are opposites of the target ele-

ment; all you’d have to do is add the rows to the target row. You usually 

aren’t that lucky — it’s more common that you’d have to add a multiple of 

one row to another row.

For example, matrix A in the preceding section has a 1 in the first row, first 

column, and a 3 in the fourth row, first column. To change the 3 to a 0, I need 

to multiply row 1 by −3 and add this alteration of row 1 to those in row 4. I 

want all the results to be placed in row 4. The commands for this operation 

include

 ✓ Naming the matrix

 ✓ Naming the multiplier and which row gets multiplied

 ✓ Naming the row that the multiple is getting added to

 ✓ Indicating where the result gets placed

Whew! This is what I have to put in my calculator: *row+(−3,[A],1,4). I type in 

the multiplier first, then the matrix, then the row that gets multiplied, and then 

the row that the product gets added to. The result goes in that fourth row.

Right now, I have to tell you a secret: I use a mailing label, stuck to the inside 

cover of my calculator, to write down all these commands. I can never remem-

ber what goes where, and my user’s manual is never handy. So these little 

scripts get written down for quick reference. You may want to do the same.

Multiplying a row by a scalar
You can multiply an entire matrix by a scalar — each element in the matrix gets 

multiplied by that same number. But sometimes you just want one of the rows 

changed or multiplied by a particular number. In matrix A, I’d like to get rid of 
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the fractions in row 2, so I choose to multiply row 2 by 6. In matrix B, I want a 

1 for the third element in row 3, so I multiply every element in row 3 by 1/2.

The operation for multiplying a single row by a scalar is relatively simple. 

You just have to name the matrix, the multiplier, and the row. For example, 

in my calculator, I enter *row(6,[A],2), putting the multiplier first, the matrix 

second, and the row third. The resulting elements are all returned to the 

same row that got multiplied.

Creating an echelon form
Not all calculators have this capability, but some will take a matrix and 

change it to the row echelon form or the reduced row echelon form. You use 

the echelon forms to determine the solution of a system of equations or to 

write the relationship between variables in equations or other relationships. 

(Refer to Chapter 4 for more on the echelon forms.) The calculator usually 

has a restriction on the types of matrices that the echelon form operations 

are performed upon: The number of rows in the matrix can’t be greater than 

the number of columns.

The row-echelon form changes your matrix into one that has 1s in the aii 
positions (row and column are the same) whenever the row is not all 0s, and 

0s below each 1. Rows of all 0s appear as the last rows of the matrix. The 

reduced row echelon form has the 1s in the a
ii
 positions (when the row isn’t 

all 0s) and 0s both below and above each 1. The matrix E is shown in its origi-

nal form, row-echelon form, and reduced row-echelon form:

To perform these operations with your calculator, you usually just have to 

access the operation and then type in the name of the matrix.
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Raising to Powers and Finding Inverses
Using your calculator, you can raise a matrix to a really high power and even 

use the reciprocal to find a matrix’s inverse. One restriction is, of course, that 

you’re dealing with a square matrix. Only square matrices can multiply times 

themselves. And only square matrices have inverses (although not all square 

matrices do have inverses).

Raising matrices to powers
Raising the matrix A to the 20th power is horrible to have to do with paper 

and pencil. With a graphing calculator, though, all you have to do is enter 

the elements of the matrix, save the matrix, and then raise the matrix to that 

power. Raising matrix A to the 20th power, I enter [A]^20 in my calculator.

Inviting inverses
The inverse of a matrix is another matrix of the same size as the original 

matrix. The inverse of matrix A times the matrix A, itself, is an identity 

matrix. Even multiplying in the opposite direction gives you the same answer. 

Symbolically: [A]−1*[A] = [A]*[A]−1 = I.

To find the inverse of a square matrix, you must use the built-in reciprocal 
button. In some calculators, it looks like x−1. You can’t use the caret button, 

^−1, to get the inverse in most calculators. The calculator will tell you if the 

matrix is singular (has no inverse).

Determining the Results 
of a Markov Chain

Some mathematical models of real-life situations involve the change of the 

state of the situation based on a probability. A Markov chain is a process in 

which the outcome of an experiment or the makeup of the next generation 

is completely dependent on the previous situation or generation. Basic to 

studying a Markov chain is a transition matrix. A transition matrix gives all the 



335Chapter 18: Ten (Or So) Linear Algebra Processes You Can Do on Your Calculator

probabilities that something moves from one state to another. For example, 

in the matrix shown here, you see the probabilities that people who bought 

items A, B, or C will buy A, B, or C the next time.

You read the entries from the left side to the top. For example, you see that 

if a person buys A now, the probability is 0.65, or 65 percent, that he’ll buy 

A next time; 10 percent that he’ll buy B next time; and 25 percent that he’ll 

buy C next time. The probability is only 5 percent that a person buying B this 

time will buy B next time, and so on.

You use the transition matrix to determine what percentage of people will 

buy A, B, and C over a period of time. If you square the matrix, then you see 

that the percentage of people who bought A the third time after buying it the 

second time has gone down to 53.5 percent and the number who bought C 

after buying A has gone up to 35.75 percent.

What’s most telling, though is what happens in the long run. You can raise the 

matrix to a high power — in this case, I only had to do the eighth power — to 

see what the long-term trends are. The values are all rounded to the nearest 

thousandth.

You see from the Markov chain that 48.4 percent of the people will be buying 

A, 11.4 percent will be buying B, and 40.2 percent will be buying C.
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Solving Systems Using A–1*B
In Chapter 4, I show you how to solve systems of linear equations in a multi-

tude of ways (well, maybe multitude is overstating it a bit). But here I present 

a way to solve systems of equations that have a single solution. You use the 

coefficient matrix, A; use the constant matrix, B; and multiply the inverse of 

the coefficient matrix times the constant matrix.

For example, I want to solve the following system of equations:

What a task! Five equations and five unknowns. But, as long as the matrix 

made up of the coefficients isn’t singular (that is, has no inverse), we’re in 

business. Create a matrix A, made up of the coefficients of the variables, and 

a matrix B, made up of the constants:

The system of equations is now represented by A*X = B, where the vector X 

contains five elements representing the values of the five variables.

Now tell the calculator to multiply the inverse of matrix A times matrix B. The 

resulting vector has the values of the variables.

You see that x
1
 = 1, x

2
 = 2, x

3
 = 3, x

4
 = 4, and x

5
 = 5.
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Adjusting for a Particular Place Value
You’re concerned with place value when you’re trying to rein in all those 

decimal places that result from computations. When you divide 4 by 9, you 

get 0.44444444 . . . with 4s going on forever. You round to thousandths by 

keeping the first four 4s and lopping off the rest. You round up if what’s being 

removed is bigger than 5 and just truncate (chop off) if it’s smaller than 5. If 

what’s to be removed is exactly 5, you either round up or down to whichever 

number is even. Sounds like too much hassle? Then let your calculator do the 

work for you.

One technique is to just change the mode, or settings, of your calculator. You 

can choose whether to let the calculator show all the decimal places in its 

capacity or to limit the decimal places to one, two, three, or however many 

places you want. This is especially nice when working with matrices. By limit-

ing the size of the numbers resulting from computations, you have an easier 

time seeing the values of the different elements.

For example, in Figure 18-2, I show you what the screen view looks like after 

raising a 3 × 3 matrix to the eighth power. (This is the matrix I used in the 

earlier section, “Determining the Results of a Markov Chain.”) The decimal 

numbers are so long, that you only see the first column.

 

Figure 18-2: 
You scroll 

to the right 
to see the 
rest of the 

matrix.
 

[A]^8
[ [.4837077494  .…
 [.4835989988  .…
 [.4836202288  .…

Some calculators even have a round function that is invoked after computa-

tions are completed. You can type in instructions to have the calculator 

round all elements of a particular matrix to your chosen number of decimal 

places. For example, in my calculator, if I use the round function, my instruc-

tion round ([A], 2) tells the calculator to take a look at matrix A and round 

each element to two decimal places. Sweet! I’d be able to see all the digits of 

all the elements in the matrix in Figure 18-2.
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Chapter 19

Ten Mathematical Meanings 
of Greek Letters

In This Chapter
▶ Taking a look at some familiar and not so familiar meanings for Greek letters

▶ Getting the historical scoop on the use of some Greek letters

If you ever belonged to a college fraternity or sorority, then you know all 

about having to recite the Greek letters in order and recognizing their cap-

ital and lowercase symbols. Most fraternities and sororities use three Greek 

letters in their names, but some only use two. And many honorary societies 

have adopted Greek letters to give their name a bit of traditional and histori-

cal flavor.

Mathematicians, statisticians, scientists, and engineers have all adopted one 

Greek letter or more as their own, special symbol to indicate a value or ratio. 

The Greek letters represent the standard for some value or computation 

that’s used often in each particular field.

In this chapter, I acquaint you with some of the more popular uses of the let-

ters of the Greek alphabet.

Insisting That π Are Round
Most schoolchildren know that “pi are squared,” so you have to correct them 

and say that they usually aren’t — at least in bakeries. The area of a circle, of 

course, is found with the famous formula: A = πr2.

You may think that the Greek letter π has always represented the number 

3.14159 . . . , ever since the relationship between the circumference and 

diameter of a circle was discovered, but that isn’t so. The mathematician 

Leonhard Euler (1707–1783) is credited with popularizing the use of π when 

writing mathematical discourses, although there is some record of π also 
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being used shortly before Euler was born. The Greek letter π also is referred 

to as Archimedes’s constant, giving you a better idea of how long the ratio 

between a circle’s circumference and diameter has been recognized.

Determining the Difference with Δ
The capital form of the Greek letter delta, Δ, signifies a change or a difference. 
In mathematics, Δx represents “the change in x” — how much the variable 

changes under certain circumstances. When using the lowercase version of 

delta, δ, the letter still represents a change or variation in mathematics. And 

attach a + or − to the δ and you have a partial charge on an ion in chemistry.

Summing It Up with Σ
The capital letter sigma, Σ, represents the sum terms in a list or sequence. 

Σ is often called the summation operator, indicating that you add up all the 

terms in a certain format for however long you want.

Change the letter to a lowercase sigma, σ, and you enter the world of statis-

tics. The letter σ represents standard deviation; square sigma, σ2, and you 

have variation, or spread.

Row, Row, Row Your Boat with ρ
The lowercase Greek letter rho, ρ, takes on different meanings in different 

settings. In statistics, ρ is a correlation coefficient, indicating how much one 

entity determines another — sort of like predictability. In physics, ρ refers to 

density. Density is measured in mass per unit volume, such as 40 pounds per 

cubic foot. And in finance, you find ρ having to do with sensitivity to interest 

rate. (I must be sensitive and not hurt interest’s feelings!) As you can see, ρ is 

a pretty popular symbol, spanning statistics, physics, and banking.

Taking on Angles with θ
The lowercase Greek letter theta, θ, is a familiar sight to geometry students. 

Theta is a standard symbol for an angle. Rather than name an angle with 

three points, such as ∠ ABC, you insert the θ symbol right into the interior 
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of the angle and refer to the angle with that one Greek letter. You also see θ 

used as the representative angle measure in many trigonometric identities 

and computations.

In finance, you find θ as a symbol representing sensitivity to passage of time. 

In thermodynamics, θ is used as a potential temperature.

Looking for a Little Variation with ε
The lowercase Greek letter epsilon, ε, in mathematics signifies just a little 
different. You might hear one mathematician say to another, “He’s within 

epsilon of proving it.” (Okay, so we’re an odd bunch.) Within epsilon, or ± ε 

indicates that you’re not exactly there; you’re above, below, to the right, to 

the left, or otherwise askew of the target.

In computer science, ε indicates an empty string, in code theory. And in 

astrometry, the symbol ε indicates the Earth’s axial tilt — we’re just a bit off.

Taking a Moment with μ
The lowercase Greek letter mu, μ, is rather amusing. (Sorry, I couldn’t help 

myself.) Actually, μ is one of the most popular of the Greek letters — used by 

many mathematical and scientific fields.

In number theory, μ represents the Möbius function (a function from number 

theory that outputs 0, 1, or –1, depending on the prime factorization of the 

input number). In statistics and probability, μ represents the mean or expected 

value of a population. And then μ is the coefficient of friction in physics and the 

service rate in queuing theory. The letter also denotes 10−6, or one-millionth.

So, how do you know, if you happen upon a μ just lying around, what it’s sup-

posed to represent? It all depends on who you’re with and what you’re talk-

ing about!

Looking for Mary’s Little λ
The letter lambda, λ, is another all-purpose lowercase Greek letter. You see it 

earlier in this book, in Chapter 16, when I discuss eigenvalues and eigenvec-

tors. The λs represent any eigenvalues of the particular matrix.
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λ also represents 1 microliter — a measure of volume that’s equivalent to one 

cubic millimeter (not very big). When measuring radio waves, λ represents 

one wavelength. In physics and engineering, λ represents the average lifetime 

of an exponential distribution. And in probability theory, you see λ as the 

expected number of occurrences in a Poisson distribution (which expresses the 

probability of events occurring based on averages from past observations).

Wearing Your ΦΒΚ Key
A high personal honor is being chosen as a member of Phi Beta Kappa, ΦΒΚ, 

an honor society whose members are the best of the best achievers. The 

society was founded in 1776 at the College of William & Mary. It’s the oldest 

honor society in the United States. The letters ΦΒΚ represent “Love of learn-

ing is the guide of life.”

Coming to the End with ω
You hear the alpha and the omega in reference to the beginning and the end — 

the first and last letters of the Greek alphabet. The lowercase letter omega, 

ω, is used in other situations, of course. In probability theory, ω represents 

a possible outcome of an experiment. And, although the capital letter N is 

usually the choice for representing the set of natural numbers, you also see ω 

used for this designation in set theory.

The capital omega, Κ, represents the ohm for electricians and the rotation of 

a planet for astronomers. Mathematicians also have an omega function, des-

ignated Κ, which counts how many prime factors a number has.



Glossary
absolute value: The numerical value or worth of a number without regard to 

its sign; the number’s distance from zero. The absolute value of both +3 and 

–3 is 3.

adjacent: Next to; sharing a side or vertex; having nothing between. The num-

bers 2 and 3 are adjacent whole numbers; in rectangle ABCD, the sides AB 

and BC are adjacent.

adjoint: The transpose of a square matrix obtained by replacing each ele-

ment with its cofactor. Each element a
ij
 is replaced with the cofactor of the 

element in a
ji
. Also called adjugate.

associativity: The property of addition and multiplication that preserves 

the final result when the elements in the operation are regrouped. 

Adding (8 + 3) + 4 yields the same result as adding 8 + (3 + 4).

augmented matrix: A matrix consisting of the coefficients of a system of 

linear equations and a final column containing the constants. Each column 

contains coefficients of the same variable from the system.

basis: A set of vectors, {v
1
, v

2
, v

3
, . . .}, which spans a vector space, V, and 

has the property that the vectors are linearly independent.

characteristic equation: The linear equation obtained by setting the deter-

minant of the matrix formed by A –λI equal to 0. The symbol λ represents the 

eigenvalues of the matrix A.

characteristic polynomial: The determinant of the square matrix defined 

by subtracting a multiple of an identity matrix from a transformation matrix, 

A –λI.

closure: The property of number systems and vector spaces in which par-

ticular operations used in the system produce only elements of that system 

or vector space. The whole numbers are closed to addition, but the whole 

numbers are not closed to division (dividing 4 by 5 does not result in a whole 

number).

coefficient: A constant multiplier of a variable, matrix, or vector. In the term 

2x, the number 2 is the coefficient.
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coefficient matrix: A matrix consisting of all the coefficients of the variables 

in a system of linear equations.

cofactors of matrix: Created from a matrix by multiplying the determinants 

of the minors of the matrix by powers of –1. The cofactor A
ij
 of matrix A is 

equal to (–1)i+j det(M
ij
), where M

ij
 is a minor of the matrix.

collinear: Lying on the same line.

column matrix (vector): An m × 1 matrix; a matrix with one column and 

m rows.

commutativity: The property of addition and multiplication that preserves 

the final result when the elements in the operation are reversed in order. 

Multiplying 4 × 5 yields the same result as multiplying 5 × 4.

consecutive: Items or elements that follow one another in some sequence. 

The integers 4, 5, and 6 are three consecutive integers.

consistent system of equations: A system of equations that has at least one 

solution.

constant: A value that doesn’t change. In the expression x2 + x + 4, the 

number 4 is a constant, and the xs are variables.

constraint: A qualification or limiting rule that affects the values that a vari-

able may have. The variable x may be limited to only numbers greater than 2: 

x > 2.

contraction: A function or transformation in which distances are shortened. 

The function f performed on the element u is a contraction if f(u) = ru, where 

0 < r < 1.

coordinate axes: Perpendicular lines dividing the plane into four quadrants. 

Traditionally, the x-axis is an horizontal line, and the y-axis is a vertical line.

coordinate vector: A column or row vector of real numbers a
1
, a

2
, . . . , a

k
, 

which are used to express the ordered basis S = v
1
, v

2
, . . . , v

k 
in the form a

1
v

1
, 

a
2
v

2
, . . . , a

k
v

k
.

dependent system of equations: A system of equations in which at least one 

of the equations is a linear combination of one or more of the other equa-

tions in the system.

determinant: The sum of all the products of all the possible permutations of 

the elements of a square matrix. Each product is multiplied by either +1 or –1.
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diagonal matrix: A square matrix in which all the elements not on the main 

diagonal are equal to zero.

diagonalizable matrix: A matrix for which you can construct another matrix 

similar to that original matrix that is a diagonal matrix.

dilation: A function or transformation in which distances are lengthened. The 

function f performed on the element u is a dilation if f(u) = ru, where r > 1.

dimension of matrix: The number of rows and columns of a matrix, 

expressed in the format m × n. The dimension 2 × 3 indicates a matrix with 

two rows and three columns.

dimension of a vector space: The number of vectors in the basis of the 

vector space.

distributive property: The property of multiplication over addition in which 

each element in a grouping is multiplied by another element outside the 

grouping and the values before and after the process are the same. When dis-

tributing the number 2 over the sum of 4 and 5, the results are the same on 

each side of the equation: 2(4 + 5) = 2(4) + 2(5).

dot product (inner product) of two vectors: The sum of the products of the 

corresponding elements of the vectors.

eigenvalue: A number associated with a matrix in which multiplying a vector 

by the matrix is the same as multiplying that vector by the eigenvalue; the 

resulting vector is a multiple of the original vector multiplied by the eigen-

value. Given the square matrix A, vector x, and eigenvalue λ, then Ax = λx.

eigenvector: A vector x associated with a square matrix A such that Ax = λx, 

where λ is some scalar. The scalar λ is called an eigenvalue of A; you say that 

x is an eigenvector corresponding to λ.

equivalent matrices: Two m × n matrices in which one is obtained from the 

other by performing elementary row operations.

free variable: A variable in a system of equations for which the other vari-

ables can be written in terms of that variable. The variable x
3
 is a free vari-

able if x
1
 = 2x

3
 and x

2
 = 3x

3
.

geometric mean: The number between two other numbers that is the posi-

tive square root of the two numbers. The geometric mean of 4 and 9 is 6, 

because 6 is the square root of 4 × 9 = 36.
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homogeneous system of equations: A system of equations, all set equal to 

zero. The system always has a solution; the solution is trivial if all the vari-

ables are equal to zero and nontrivial if some of the variables are not equal 

to zero.

identity: An element in a set associated with an operation such that perform-

ing the operation with another element and the identity does not change the 

value or state of that other element. In the real number system, the additive 

identity is 0 and the multiplicative identity is 1.

identity matrix: A square matrix with its main diagonal (from upper left to 

lower right) consisting of 1s and the rest of the elements 0s.

image: The resulting matrix or vector after performing a function operation 

on a matrix or vector.

inconsistent system of equations: A linear system that has no solution.

independent equations: A system of equations for which none of the equa-

tions is a linear combination of the other equations in the system.

index of element in matrix: The row and column designation or position of 

the element a, indicated by a subscript, a
ij
. The element a

24
 is in the second 

row and fourth column of the matrix.

inverse matrix: A square matrix associated with another square matrix such 

that the product of the matrix and its inverse is an identity matrix.

inversion (of a permutation): A permutation in which a larger integer pre-

cedes a smaller integer. When considering the permutations of the first three 

positive integers, the permutation 132 has one inversion (3 comes before 2), 

and the permutation 321 has three inversions (3 comes before 2, 3 comes 

before 1, 2 comes before 1).

invertible matrix: A square matrix that has an inverse. Also called a nonsin-
gular matrix.

kernel of linear transformation: The subset of a vector space for which a 

linear transformation takes all the vectors to a 0 vector.

linear combination: The sum of the products of two or more quantities, each 

multiplied by some constant value. The linear combination of the elements 

of a set of vectors and some scalars is written a
1
v

1
 + a

2
v

2
 + . . . + a

k
v

k
,
 
where 

each a
i
 represents a real number and each v

i
 represents a vector.

linear equation: An equation in the form a
1
x

1
 + a

2
x

2
 + . . . + a

k
x

k
 = b, where the 

as are constants, the xs are unknowns, and the b is a constant.
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linear independence: When the linear combination of a set of elements is 

equal to 0 only when each of the scalar multiples is 0. The set of vectors {v
1
, 

v
2
, . . . , v

k 
} is linearly independent when a

1
v

1
 + a

2
v

2
 + . . . + a

k
v

k. 
= 0 only if a

1
 = 

a
2
 = . . . = a

k 
= 0.

linear transformation (operator): A transformation or operation performed 

on elements from a set in which addition and scalar multiplication are pre-

served. Letting T represent the transformation, u and v represent vectors, 

and a and b represent scalars, then T(au + bv) = aT(u) + bT(v).

magnitude of vector: The length of a vector. The value obtained by comput-

ing the square root of the sum of the squares of the elements of the vector.

main diagonal of matrix: The elements of a square matrix in which the two 

elements of the index are the same: a
11

, a
22

, . . . , a
kk

. These elements start in 

the upper left-hand corner and run down to the lower right-hand corner of 

the matrix.

matrix: A rectangular array of numbers or elements with m horizontal rows 

and n vertical columns.

minor of matrix: A subset of a matrix delineated by removing a row and column 

associated with a particular element. A sub-matrix is related to the a
ij
 ele-

ment of the original matrix in that the ith row and jth column are eliminated.

natural basis of vectors: The basis of a set of vectors where one element in 

each vector is equal to 1 and the other elements are equal to 0, and no vector 

has the 1 in the same position. See also standard basis of matrices.

noninvertible matrix: A square matrix that does not have an inverse. Also 

called a singular matrix.

nonsingular matrix: A square matrix that has an inverse. Also called an 

invertible matrix.

non-trivial solution: A solution of a homogeneous system of equations in 

which the values of the scalars are not all zero.

null space: The set of all the solutions of a system of homogeneous equations.

ordered pair (triple, quadruple): The listing of the coordinates of points or 

elements of a vector, in parentheses and separated by commas, in which the 

order is natural and sequential. The point on the coordinate system (2,3) is 

an ordered pair where x = 2 and y = 3.

orthogonal: Vectors whose inner product is 0. An orthogonal basis of a 

vector space is one in which all the vectors are orthogonal to one another.
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orthonormal: An orthogonal basis of a vector set in which the vectors all 

have a magnitude of 1.

parallelepiped: A polyhedron in which all the faces are parallelograms.

parallelogram: A four-sided polygon in which the opposite sides are both 

parallel and congruent.

parameter: A variable used to express a relationship and whose value distin-

guishes the various cases.

parametric equation: An equation in which a parameter is used to dis-

tinguish between different cases. In the slope-intercept form of the linear 

equation, y = mx + b, the m and b are parameters, affecting the slant and 

y-intercept of the graph of the line.

permutation: A rearrangement of an ordered listing of elements. The six per-

mutations of the first three letters of the alphabet are: abc, acb, bac, bca, cab, 

and cba.

perpendicular: At right angles to one another.

polyhedron: A multi-surface figure.

polynomial: A function represented by f(x) = a
n
xn + a

n
–

1
xn–1 + a

n
–

2
xn–2 + . . . 

+ a
1
x1 + a

0
, where as are real numbers and ns are whole numbers.

range of a function f: All the results of performing a function operation on all 

the elements in a set.

range of linear transformation: All the vectors that are results of performing 

a linear transformation on a vector space.

ray: A geometric figure starting with an endpoint and including all the points 

extending along a line in one direction from that endpoint.

real number: Any rational or irrational number.

reciprocal: Any real number (except 0) raised to the –1 power. The recipro-

cal of 2 is 1/2. The reciprocal of 4/3 is 3/4. The product of a number and its recip-

rocal is 1.

reflection: A transformation in which all reflected points are transported to 

the opposite side of the line of reflection at an equal distance to the line of 

reflection and on a line perpendicular to the line of reflection.
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reverse diagonal: The diagonal of a square matrix that runs from the upper-

right corner to the lower-left corner of the matrix.

right angle: An angle measuring 90 degrees with rays that are perpendicular 

to one another.

rotation: A transformation in which points are transported to positions by a 

degree measure. The degree measure is determined by the angle formed from 

the original point to the center of the rotation to the rotated or image point.

row matrix: A 1 × n matrix; a matrix with one row and n columns.

scalar: A constant or constant multiple.

semiperimeter: Half the perimeter of a polygon.

singular matrix: A square matrix that does not have an inverse. Also called a 

noninvertible matrix.

skew-symmetric matrix: A matrix in which each element a
ij
 = –a

ji
. The matrix 

is equal to the negative of its transpose. If the element in the second row, 

third column is 4, then the element in the third row, second column is –4.

solution of system linear equations: Sequence of numbers satisfying (making 

true statements) when substituted into the equations of the system.

span: All the vectors in a vector space, V, that are linear combinations of a 

set of vectors, {v
1
, v

2
, . . . , v

k 
}, called its spanning set.

spanning set: A set of vectors, {v
1
, v

2
, . . . , v

k 
}, whose linear combinations 

produce the vectors in a vector space.

square matrix: A matrix with the same number of rows and columns.

standard basis of matrices: A basis consisting of vectors that are columns of 

an identity matrix. Each vector has one nonzero element, which is a 1.

standard position of a vector: A vector positioned with its endpoint at the 

origin.

subspace: A non-empty vector space that is a subset of a vector space with 

the same operations as the vector space.

transformation: A passage from one expression, figure, or format to another 

through a defined process or rule.
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transition matrix: A matrix used in the rule or process defined by a 

transformation.

translation: A transformation in which points are transported to positions by 

a length or distance along a vector placed at a particular angle.

transpose of matrix: A matrix constructed by changing all rows of a matrix to 

columns and all columns to rows. Each element a
ij
 becomes element a

ji
.

triangular matrix: A matrix in which all the elements either above or below 

the main diagonal are 0. An upper triangular matrix has all zeros below the 

main diagonal, and a lower triangular matrix has all zeros above the main 

diagonal.

trivial solution: When the solution of a homogeneous system has each vari-

able equal to 0.

unit vector: A vector whose magnitude is equal to 1.

variable: An unknown quantity that can take on any of the values from a par-

ticular set. In most situations, the variable x in the expression 2x + 3x2 takes 

on the value of any real number.

vector: A member of a vector space.

vector in two-space: A measurable quantity that is described by both its 

magnitude and its direction. A directed line segment in the plane.

vector space: A set of elements subject to properties involving two defined 

operations, + and ,, and including identities and inverses.

zero matrix: An m × n matrix in which each element is 0.
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• B •
back substitution method for algebraically 
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consecutive, 344

consistent system of equations
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Dantzig, George Bernard 
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dependent system of equations, 344

Derive, 238

determinants
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area of triangle, fi nding, 192–195
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columns, interchanging, 204–206

computing, 186–189
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of matrix products, 221–222

minor, 189–190

overview, 15–16, 185
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198–199
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transposing, 202–203
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diagonal matrices, 51, 304–307, 345

diagonalizable matrix, 345
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of vectors, 25
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dimension of vector space, 345
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addition of matrices, 55
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linear transformation, 161
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vectors, 24, 35–37, 345
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of diagonal matrices, 305–307

of matrix inverse, 301–302

of matrix transpose, 300

overview, 16–17

of powers of square matrices, 303–304

solving for, 294–299
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eigenvalues (continued)

3 × 3 matrix, 297–299

of triangular matrix, 302–303

2 × 2 matrix, 294–296

eigenvectors

contracting, 293

defi ned, 291, 345

of diagonal matrices, 305–307

dilating, 293

example, 290

of matrix inverse, 301–302

overview, 16–17
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solving for, 294–299

3 × 3 matrix, 297–299

2 × 2 matrix, 294–296
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epsilon (ε), 421
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with, 206–209
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for lines, 274

for planes, 275
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Gram-Schmidt orthogonalization process, 
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graphing calculators

Markov chain, determining results of, 

334–335

for matrices, 236–237, 329–334

mode, changing, 337

place value, adjusting for a particular, 337

round function, 337

for row operations, 331–333

systems of equations, solving, 328–329, 

336

graphing linear combinations of vectors, 95
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overview, 67–68
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247

heat distribution matrix, 320–321
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homogeneous systems of equations
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nontrivial solution, 124–128

overview, 123–124

trivial solution, 124–127
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identity matrix
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determinant of, 203–204

multiplicative, 50

overview, 49

identity transformations

additive identity transformation, 159–160

multiplicative identity transformation, 

160–161
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linear equations, 235–236
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135

set with multiple vectors, 133–134

set with one vector, 133

set with two vectors, 133

set with unit vectors, 135

testing for, 129–132

linear operator, 148

linear programming, 76

linear transformation

associative property, 154–155, 157–158

commutative property, 155–156

contractions, 168–169

defi ned, 347

determining when a transformation is a, 

151–154

dilations, 168–169

distributive property, 161

examples, 148–150

identity transformations, 159–161

kernel (null space), 169–170

matrix for, 161–163

overview, 147–148

properties, 148

range, 170–172

refl ections, 165–167

requirements, 150–151

rotations, 164–165

scalar multiplication, 150–151, 158

translations, 167–168

vector addition, 150–151

lines

forming vector spaces, 274–275

general vector equation for, 274

slope-intercept form of equation of, 274

listing permutations

overview, 177

with table, 177–179

with tree, 179–180

lower triangular matrix

creating, 217–221

described, 51

• M •
magnitude of vector

defi ned, 347

overview, 22, 29–30

scalar multiplication, adjusting 

magnitude for, 30–32

triangle inequality, 32–35

main diagonal of matrix, 347

manipulated matrices

adding the multiple of a row or column to 

another row or column, 212

multiplying a row or column by a scalar, 

209–211

markers, 13

Markov chain, determining results of, 

334–335

Mathematica, 238

mathematicians

Cauchy, Augustin Louis, 36

Cramer, Gabriel, 233

Dantzig, George Bernard, 76

Euler, Leonhard, 339

Gauss, Carl Friedrich, 114

Hamilton, William Rowan, 247

Legendre, Adrien-Marie, 144

Vandermonde, Alexandre-Theophile, 217

matrices

adjoint, 225–228

advantages of using, 13–14

basis, 142

coeffi cient, 77

cofactor, 226–228

column, 20, 43

column space, 265–269

commutativity, 54

computers used for calculating, 238

constant, 77

defi ned, 347

diagonal, 51, 304–307

dimensions of, 43

dividing, 59–60

graphing calculators for, 236–237, 

329–334



357357 Index

identity, 49–50

inverse, 58, 59–64, 224–225, 228–230, 

301–302

invertible, 57–58

for linear transformation, 161–163

lower triangular, 51

naming, 42

non-singular, 51

notation for, 42–43

null space, 270–271

overview, 12–14, 41

real-world applications, 312–322

row, 43

scalar multiplication of, 45

similar, 305

singular, 51

skew-symmetric, 263–264

square, 50, 51

subtraction of, 43–44

transition, 285–288, 334–335

transposing, 55–56

triangular, 51, 213

upper triangular, 51

zero, 49, 56–57

matrix addition

associativity, 53

commutativity, 52–53

distributive rule, 55

overview, 43–44

matrix equation (Ax = b)

infi nite solutions, 115–118

multiple solutions, 112–120

no solution, 120–122
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single solution, 110–112
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order for, 46
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overview, 37–38
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of matrix-vector multiplication, 108
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reduced row echelon form, 79–82, 333

reducing number of vectors in set with 

linear independence, 135

refl ection

defi ned, 348

overview, 165–167

requirements

linear transformation, 150–151

multiplication of matrices, 46

subspace, 256

reverse diagonal, 349

rho (ρ), 340

right angle, 349

Robinson, Tara Rodden (Genetics For 
Dummies), 319

rotation

defi ned, 349

eigenvectors, 291–292

linear transformation, 164–165

round function on graphing calculators, 

337

row echelon form, 79–82, 333

row matrix

defi ned, 349

described, 43

row operations

adding the multiple of one row to 

another, 332

adding two rows together, 331–332

echelon form, creating, 333

impossible statements, 234–235

infi nite solutions, 235

interchanging rows, 204–206

multiplying a row by a scalar, 332–333

overview, 60–62, 331

switching rows, 331

row reduction, 59, 59–64

rules

building subsets with, 257–258

manufacturing a matrix to replace a, 

162–163

• S •
scalar, 17, 24, 45, 87, 349

scalar multiplication

adjusting magnitude for, 30–32

associative property, 251

closure requirement for, 245–247

commutativity, 54, 108

distributive property, 108, 251–252

linear transformation, 150–151, 158

matrix-vector multiplication as sum of 

scalar multiplications, 107–108

overview, 24–27, 242–245

transformation composition, 158
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semiperimeter

defi ned, 349

described, 193

set with multiple vectors, 133–134

set with one vector, 133

set with two vectors, 133

set with unit vectors, 135

set with zero vector, 134–135

sets that span

R2, 101–102

R3, 102–103

sigma (∑), 420

similar matrices, 305

singular matrix

defi ned, 349

described, 51

size of vectors, 20

skew-symmetric matrix

defi ned, 349

overview, 263–264

slope-intercept form of a linear equation, 

71–72, 274

solution of system linear equations, 349

solutions

infi nite, 67, 115–118, 235–236

multiple solutions, 112–120

overview, 65–66

single, 66–67, 80–82, 110–112

specialized solutions, 118–120

solutions for Ax = b (matrix equation)

infi nite solutions, 115–118

multiple solutions, 112–120

no solution, 120–122

overview, 110

single solution, 110–112

specialized solutions, 118–120

specifi c vector, solving for the solutions 

of a, 112–115

span

broadening, 96–97

defi ned, 349

determining basis by, 138–141

determining whether a vector belongs, 

98–101

narrowing, 97–98

overview, 95–96

spanning set

bases created from, 276–279

defi ned, 349

fi nding, 261–262

overview, 261

polynomials in, 262–263

skew-symmetric matrix, 263–264

spotted owl matrix, 317–318

square matrix

defi ned, 349

described, 50, 51

standard basis of matrices

defi ned, 349

overview, 136–137

standard deviation, 340

standard position of a vector

defi ned, 349

overview, 20–21

subset

described, 255

determining if a set is a, 258–259

determining if you have a, 256–259

rules, building subsets with, 257–258

of vector space, 259–261

subspace

defi ned, 349

described, 255

requirements for, 256

subtraction

of matrices, 43–44

of vectors, 27, 29

summation operator, 340

superscript T, 37

superset, 255

systems of equations

Ax = b (matrix equation), 108–109

consistent, 66–67

graphing calculators used for solving, 

328–329, 336

inconsistent system, 71–72

matrix-vector multiplication, 108–109

overview, 10, 65

solutions for, 65–70

solving algebraically, 72–75

solving with matrices, 76–82

solving with multiple solutions, 82–83

solving with single solution, 80–82
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• T •
testing

for linear dependence, 129–131

for linear independence, 129–132

theta (θ), 340–341

three planes meeting, graphing systems of 

two or three equations with, 69–70

3 × 3 matrix

determinants, computing, 187–189

eigenvalues, solving for, 297–299

eigenvectors, solving for, 297–299

three-space vectors, 23

traffi c fl ow matrix, 312–314

transformation, 148, 429

transformation composition

associative property, 157–158

overview, 156–157

scalar multiplication, 158

transition matrix, 285–288, 334–335, 350

translation

defi ned, 350

linear transformation, 167–168

of parallelogram, 197

transpose of matrix, 350

transposing

determinants, 202–203

matrices, 55–56

vectors, 37

triangle inequality

in averages, 34–35

magnitude of vectors, 32–35

overview, 32–33

triangular matrices

creating, 214–216

defi ned, 350

described, 51, 213

determinants, 213–214

eigenvalues of, 302–303

lower triangluar matrix, creating, 217–221

upper triangluar matrix, creating, 217–221

trivial solution

defi ned, 350

determining, 126–127

nontrivial solutions compared, 124–126

overview, 124

two equations system, solving, 73–74

2 × 2 matrix

determinants, computing, 186–187

eigenvalues, solving for, 294–296

eigenvectors, solving for, 294–296

inverse matrices, 59–60

two-space vectors

angle between, fi nding, 39–40

described, 20–23

• U •
unit vector, 350

upper triangular matrix

creating, 217–221

described, 51

• V •
Vandermonde, Alexandre-Theophile 

(mathematician), 217

Vandermonde matrix, 217

variable, 350

variable vectors, 124

vector addition

additive inverse, 253

associative property, 250–251

closure requirement for, 245–247

commutative property, 248–250

linear transformation, 150–151

overview, 27–29, 242–244

zero vector, 28–29, 253

vector in two-space, 350

vector space

additive inverse, 253

closure requirement for, 245–247

defi ned, 242, 350

lines forming, 274–275

overview, 14–15, 241–243

planes forming, 275–276

properties, 247–254

spanning sets, 261–264, 276–279
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vector space (continued)

subset of, 259–261

zero vector, 253

vectors

contracting, 25

on the coordinate plane, 20–23

creating, 20

defi ned, 430

determining whether a vector belongs to 

a span, 98–101

determining whether you can produce a 

specifi c vector, 89–92

dilating, 25

inner product, 35–37

length of, 22

magnitude, 22, 29–35

negative scalar multiplication, 26–27

nonstandard position, 21–23

orthogonal, 37–38

orthogonal set, 280

overview, 13, 19–20

rays, vectors represented by, 19

scalar multiplication, 24–27

size of, 20

standard position, 20–21

subtraction of, 27, 29

three-space, 23

transposing, 37

two-space, 20–23

variable, 124

zero, 26, 124

• W •
writing vectors as sums of other vectors, 

87–88

• Z •
zero determinants

with equal rows or columns, 206–209

fi nding a row or column of zeros, 206

overview, 206

zero matrix

defi ned, 350

described, 49, 56–57

zero vector

addition of, 28–29

described, 26, 124

vector addition, 253

vector spaces, 253
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