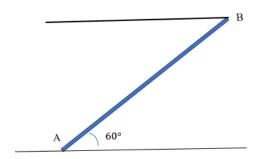
ESCUELA TECNICA SUPERIOR DE INGENIERIA Y DISEÑO INDUSTRIAL

EXAMEN DE FISICA I

Fecha: 18-01-2022 CURSO: 2021-22

Fecha de publicación de las preactas: 31 de enero de 2021


Fecha de solicitud de revisión del examen ante el Tribunal de la asignatura: 1 y 2 de febrero

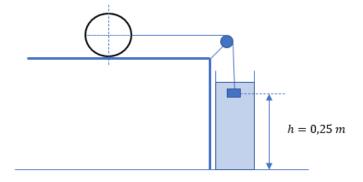
Consultar al profesor del grupo las fechas de publicación previa de las calificaciones de cada grupo y de la revisión preliminar del examen ante el profesor.

PARTE A: Teoría

- **1.** Indique el módulo, la dirección, el sentido y el significado físico de las componentes intrínsecas de la aceleración para un movimiento arbitrario (no necesariamente plano) e indique que se entiende por radio de curvatura de una trayectoria arbitraria. (**1 punto**)
- **2.** ¿Que debe ocurrir para que un sistema de fuerzas sea equivalente a una sola fuerza? Indique un par de ejemplos en los que un sistema de fuerzas es equivalente a una fuerza única (**1 punto**)
- 3. Enuncie y demuestre el teorema fundamental de la hidrostática (1 punto)

PARTE B: Problemas

Problema 1


Una barra homogénea AB, de masa m=10kg y longitud L=3m, se mantiene formando un ángulo de 60° con la horizontal, mediante una articulación en el suelo, punto A, y un cable horizontal a la barra enganchado en el extremo superior de la misma, punto B. Si de la barra pende una masa M=200kg, a) ¿a qué distancia x del extremo A de la barra se debe colgar dicha masa para que la tensión del cable no exceda los 1000N? b) ¿Que ángulo forma con la horizontal la reacción sobre la articulación? (2,5 puntos)

Problema 2

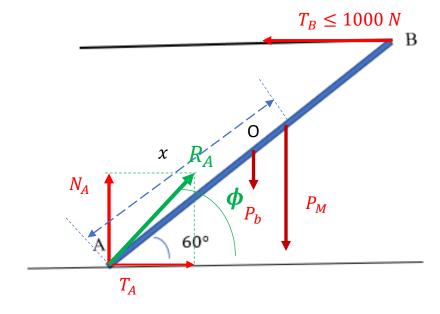
En un tanque cerrado que contiene agua (y por encima de ella un gas a presión P_T), el nivel del líquido está a una altura H=0.5~m sobre su base. Si se practica un agujero muy pequeño a una profundidad h=0.25~m contada desde la superficie libre del líquido. ¿Cuál debe ser la presión P_T , para que el agua que sale por el orifico alcance una distancia D=2.0~m? Tómese la presión atmosférica como 100 KPa. (1.5 puntos)

Problema 3

Sobre una mesa horizontal descansa un cilindro homogéneo inicialmente en reposo de 0.5 kg de masa y 5 cm de diámetro que, solicitado por una cuerda a la altura de su eje, rueda sin deslizar. Esta cuerda (inextensible y sin masa) discurre a través de una polea (sin masa) y de ella pende un cuerpo pequeño de 2 kg de masa y de 3 g/cm³ de densidad sumergido totalmente en un recipiente con agua (ver figura) y a una altura h = 0.25 m. ¿Cuanto tiempo tardará el cuerpo en llegar al suelo? (**3 puntos**)

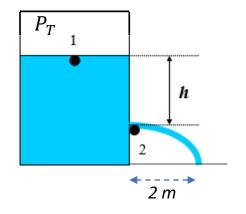
Problema 1

Una barra homogénea AB, de masa m=10kg y longitud L=3m, se mantiene formando un ángulo de 60° con la horizontal, mediante una articulación en el suelo, punto A, y un cable horizontal a la barra enganchado en el extremo superior de la misma, punto B. Si de la barra pende una masa M=200kg, a) ¿a qué distancia x del extremo A de la barra se debe colgar dicha masa para que la tensión del cable no exceda los 1000N? b) ¿Que ángulo forma con la horizontal la reacción sobre la articulación? (2,5 puntos)


$$N_A = P_b + P_M = 10 \cdot 9.8 + 200 \cdot 9.8 = 2058N$$

$$T_A = T_B = 1000N$$

$$P_b \cdot AO \cdot sen30^{\circ} + P_M \cdot x \cdot sen 30^{\circ} = 1000 \cdot AB \cdot sen 60^{\circ}$$


$$98 \cdot 1.5 \cdot \frac{1}{2} + 1960 \cdot x \cdot \frac{1}{2} = 1000 \cdot 3 \cdot \frac{\sqrt{3}}{2} \implies x = 2.58 \, m$$

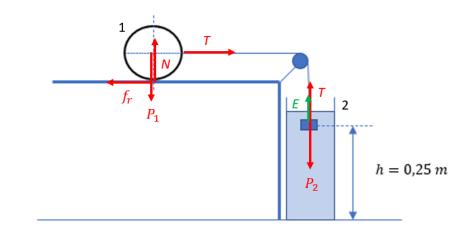
$$tg\phi = \frac{N_A}{T_A} = \frac{2058}{1000} = 2,058 \implies \phi = 1,12 \ rad \cong 64,1^{\circ}$$

Problema 2

En un tanque cerrado que contiene agua (y por encima de ella un gas a presión P_T), el nivel del líquido está a una altura H=0.5~m sobre su base. Si se practica un agujero muy pequeño a una profundidad h=0.25~m contada desde la superficie libre del líquido. ¿Cuál debe ser la presión P_T , para que el agua que sale por el orifico alcance una distancia D=2.0~m? Tómese la presión atmosfèrica como 100 KPa. (1,5 puntos)

$$2 = v_2 \cdot t_v \quad \xrightarrow{0,25 = \frac{1}{2} \cdot g \cdot t_v^2} \quad t_v = \sqrt{\frac{2 \cdot 0.25}{9.8}} = 0.226 \, s \quad \Rightarrow v_2 = \frac{2}{0.226} = 8.85 \, m/_S$$

$$p_{1} + \rho g z_{1} + \frac{1}{2} \rho v_{1}^{2} = p_{2} + \rho g z_{2} + \frac{1}{2} \rho v_{2}^{2} \xrightarrow{Tomando\ el\ origen\ de\ alturas\ en\ el\ suelo}$$


$$P_{T} + 1000 \cdot 9,8 \cdot 0,5 + \frac{1}{2} \cdot 1000 \cdot 0^{2} = 100000 + 1000 \cdot 9,8 \cdot 0,25 + \frac{1}{2} \cdot 1000 \cdot 8,85^{2} \Rightarrow$$

$$P_{T} = 1000000 - 1000 \cdot 9,8 \cdot 0,25 + \frac{1}{2} \cdot 1000 \cdot 8,85^{2} = 100000 + 36711,25 =$$

$$136711,25 \text{Pa} \cong 1,35\ bar$$

Problema 3

Sobre una mesa horizontal descansa un cilindro homogéneo inicialmente en reposo de $0.5\,\mathrm{kg}$ de masa y 5 cm de diámetro que, solicitado por una cuerda a la altura de su eje, rueda sin deslizar. Esta cuerda (inextensible y sin masa) discurre a través de una polea (sin masa) y de ella pende un cuerpo pequeño de 2 kg de masa y de 3 g/cm³ de densidad sumergido totalmente en un recipiente con agua (ver figura) y a una altura $h=0.25\,m$. ¿Cuanto tiempo tardará el cuerpo en llegar al suelo? (3 puntos)

Cuerpo 1
$$T-f_r=m_1\cdot a \qquad R\cdot f_r=\frac{1}{2}m_1\cdot R^2\cdot \frac{a}{R}$$
 Cuerpo 2
$$P_2-T-E(Empuje)=m_2\cdot a$$

Sumando las tres

$$P_{2} - E = m_{1} \cdot a + \frac{1}{2} \cdot m_{1} \cdot a + m_{2} \cdot a = \left(\frac{3}{2}m_{1} + m_{2}\right) \cdot a \xrightarrow{\rho_{agua} = \frac{1}{3} \cdot \rho_{agua}} P_{2} - \frac{1}{3}P_{2} = \left(\frac{3}{2}m_{1} + m_{2}\right) \cdot a \Rightarrow$$

$$a = \frac{\frac{2}{3}P_{2}}{\left(\frac{3}{2}m_{1} + m_{2}\right)} = \frac{\frac{2}{3} \cdot 2 \cdot 9.8}{\frac{3}{2} \cdot 0.5 + 2} \cong 4.75 \, \frac{m}{s^{2}} \Rightarrow 0.25 = \frac{1}{2} \cdot 4.75 \cdot t^{2} \Rightarrow t = \sqrt{\frac{0.25 \cdot 2}{4.75}} = 0.32 \, s$$