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Abstract-- The behaviour of the electric field  in earth generated 
by  a fault current derivation to a grounding grid can adequately 
be  modeled  by a Coulombian potential that is constant in the 
grid and its symmetrical. We aim here at approximating, in an 
efficient way, the charge distribution that produces this potential  
by using Potential Theory methods. Firstly we describe the 
extremal charges method that allows to obtain an approximation 
to  the charge distribution as the solution of an optimization 
problem, specifically a linear programming problem. Secondly, 
we show the accuracy of the method obtaining the potential and 
the fundamental parameters of a grid. Then, we describe a grid 
design optimization methodology. The optimal grid performance 
is the one that achieves the better agreement between the grid 
resistance and the touch and step voltages. Both parts are 
illustrated with graphical results showing the accuracy of this 
new method of grid analysis and design. 

 
Index Terms-- Computer modeling, grid resistance, grounding, 
measurements, optimization of grounding grids, safety, step 
potential, touch potential.  

 

I. INTRODUCTION 

T HE estimation of the grid resistance values and the touch  
and step voltages, is usually carried out by means of 
formulas and algorithms that take into account the mutual 

influence between the grid electrodes. The methodology must 
reflect the physical phenomenon which shows that the current 
derived to earth is distributed in the grounding grid in such a 
way that the potential is constant in it.  

The properties of the electrical potential have allowed us to 
estimate the current distribution in the grid by using the so-
called extremal charges method developed by some of the 
authors in [1]. A good approximation to the current 
distribution, that makes constant the potential on the 
grounding grid, is performed by a linear programming 
algorithm.  

To evaluate the quality of this approximation, we apply this 
methodology to several academic grids. First of all we check 
that  the obtained solution provides a nearly constant potential 
on the grid surface. Then, the computed current distribution 
can be used to estimate the grid resistance and the potential 
anywhere. Later, we analyze whether the values of the 
fundamental parameters can be improved by considering 

unequally spaced grids and/or peripheral ground rods, since 
both operations smooth the current distribution. Although  it is 
clear that the incorporation of electrodes or rods to a grid 
reduces the values of its fundamental parameters, this can also 
be done  by changing the grid performance while keeping the  
conditions of location and the quantity of material. The results 
confirm that the use of grids with optimized geometries can 
supply savings of material while preserving the security in the 
substations.  

In order to choose the grounding grid design that better fits 
the specific necessities, it is useful  to dispose of a nimble but  
accurate method that allows to discriminate between different 
grid performances and  to know precisely the zones of greater 
risk. The values of the current distribution are obtained as the 
solution of a linear system whose coefficients are usually 
computed by considering the influence between the linear 
segments into which the grounding electrodes have been 
broken up. The most usual methods to construct  the influence 
matrix are the Average Potential Method ([2],[3]), the Method 
of Moments ([4]), the Charge Simulation Method ([5],[6]) and 
the Boundary Element Method ([7],[8].) If the influence 
matrix was built in an accurate way and the resolution of the 
linear system provided a solution greater than zero, any of the 
above methods would lead to a good approximation of the 
current distribution. Well now, the influence coefficient 
matrix  obtained by applying any of them, has not any 
algebraic property guaranteeing that the obtained charge 
coefficients are positive. As far as we now, the restriction on 
the charge coefficient of being greater than or equal to zero is 
not imposed even when the problem is tackled by an 
optimization method like least squared error method.  

It is well-known that the smaller the segments the better 
approximation, but if the segmentation were refined enough 
the coefficient of the influence matrix corresponding to nearby 
elements would produce numerical instabilities, see ([8],[9]).  

The extremal charges method solves these difficulties with 
simplicity. Firstly, the methodology that we use to construct 
the influence matrix assures that their coefficients are bounded 
for any geometry and for any electrode segmentation. Results 
of Potential Theory, in which is based the extremal charges 
method, allow to obtain, by solving a linear programming 
problem, the better positive approximation to the solution of 
the corresponding system.  

                                                           II. EXTREMAL CHARGES METHOD This work was partly supported  by the Comisión Interministerial de Ciencia y 
Tecnología (Spanish Research Council,)  under project BFM2000-1063. All 
the authors are in the Departament of Matemàtica Aplicada III of  Universitat 
Politècnica de Catalunya (Spain). e-mail: enrique.bendito@upc.es.  

In this section we describe a new method to compute the 
electrical potential.  For the sake of simplicity we will assume 
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that the soil is homogeneous. Nevertheless, the consideration 
of an heterogeneous soil, that is often represented as a 
multilayer model, does not produce any dysfunction in our 
calculus method and it only give an increase in the number of 
operations needed to compute the influence matrix. Besides, if 
we assume that the ground surface is flat, then the method of 
images can be used and hence the potential will be 
characterized for being constant on the grounding grid and its 
symmetrical. Specifically, if  denotes the grounding grid 
and  denotes its boundary, then the current distribution (D∂
σ  verifies for all  

 
 

d 

d’

x

p’ 

p 

     Charge points 
     Evaluation points 

 d:  Distance from the evaluation point to the
             charge point
 d’: Distance from the evaluation point to the
     simetrized charge point 

 
 
 
 
 
 
 
 
 D

)
)(Dx ∂∈

,1)(
'

11)(
4 )(

=










−
+

−∫∂
ydS

yxyx
y

D
σ

π
ρ

 
 
 
 
 )( =xV σ           (1)  
 

where ρ  is the soil resistivity,  is the symmetrized of  

and 

'y y

y−x  is the euclidean distance in  It is well-known 
that the grid resistance is obtained from 

.3ℜ

σ  as  

 
 
Fig. 1.  Illustration of an electrode discretization. 
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On the other hand, in the context of Potential Theory, problem 
(1) is known as equilibrium problem for the grounding grid 
and its symmetrical. Moreover, this equilibrium problem is 
equivalent to the following optimization problem, (see [10]): 
obtain  producing  )(1* DM∈µ

where jiij pxd −=  and .'' jiij pxd −= Then problem 
(2)  is approximated by the following problem: 
                                                    (3) ),,( 1
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µ ∂∈∈ Note that the unknowns of this optimization problem are the 
charges and the potentials V  depending linearly on them. So 
if we introduce an additional parameter u  problem (3) can be 
rewritten as  a linear programming problem: 
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where is the set of positive charge distributions in 

such that In addition, is concentrated 

on ∂  its potential is constant on  ∂  say 
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The knowledge of the optimal solution  ( )***
1 ,,, uaa mK  allows 

to estimate the current density as well as to know the grid 
resistance, the potential on the grid and on earth, and 
consequently the touch and step voltages. Specifically,  is 

an approximation of value 

*u

α  and hence *

2
u

π
ρ is an 

approximation of the grid resistance ;R ( )**
1 ,, maa K  is an 

approximation of the current distribution and so the electrical 
potential at any point is approximated by: 

Therefore to find the current distribution and the grid 
resistance it would suffice to solve problem (2). The extremal 
charges method consists on discretizing this problem in order 
to transform it into a sequence of linear programming 
problems whose solutions converge to the solution of problem 
(2). One of the keys of the discretization process, as make also 
the charge simulation method, is to distinguish between the 
points where the charge is placed and the points where the 
potential will be evaluated, as the charge simulation method 
do.  Specifically, we consider a set of   charge points placed 
at the electrodes axes, with charge  in prescribed nodes  
and their symmetrical  which corresponds to discretize 

and we consider a set of n  fixed evaluation 
points,  placed on the electrodes boundary, which corres-
ponds to the discretization of the grounding grid boundary. 
Figure 1 displays the discretization process of an electrode 
and its symmetrical.  
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where I  denotes the fault current.  
In this way, we obtain the charge distribution as the solution 
of an optimization problem that, in particular, has the property 
of giving a positive solution which is necessary for being an 
approximation of the current density, [9],[11]. This optimiza-
tion problem represents an alternative to the resolution of the 
linear system that other methods raise. In addition, the 
extremal charges method avoids the troubles associated with 
the calculus of the auto-influence coefficients that arise in 

Now the potential at an evaluation node  due to the  
selected charges  can be written as: 

ix m
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other methods, since we distinguish  between charge points 
and evaluation points, and so all the coefficients are upper 
bounded by the inverse of the electrode radius. This fact 
eliminates the possible numerical instability and at the same 
time keeps the convergence of the approximated solution. 
Clearly, the grounding grids usually have not extremities and 
when rods are incorporated to them, their extremities are far 
enough  from the earth so that a rough approximation of the 
charge in the extremities does not produce instabilities in the 
computations. This does not eliminate the fact that the 
electrical potential is singular and it is divergent on one-
dimensional elements. Therefore, if the segmentation of the 
electrodes is refined enough, instabilities will appear.  Some 
of the authors computed the current density of a 2 meters long 
electrode by means of  both the  boundary element method 
making a segmentation of 25 elements with parabolic 
interpolation and the average potential method with 100 
segments. In both cases, important  fluctuations of the current 
density near the extremities were obtained being these 
fluctuations catastrophic when the segmentation was refined. 
These computations can be found in [8]. 

 Besides, the independence between the number of charges 
and evaluation points enables us to discretize the grid by using 
different number of charges and evaluation points depending 
on the required accuracy. For instance, a decrease of the 
number of evaluation points leads to a linear programming 
problem in which the number of restrictions has decreased and 
therefore it is faster. On the other hand, a sophisticated 
geometry with plentiful electrodes will require to use  enough  
charge points to get good approximations.  

In order to get enough charge points without increase the 
number of variables, we broken up into segments the 
electrodes and we consider in each segment a charge of value 

 uniformly distributed in a few number of points. In this 
way we increase the number of charge points while keeping 
the number of unknowns,  what only produces a little increase 
in the computation time of the coefficients of the constraint 
matrix.  Moreover, from the algorithmic point of view, the 
characteristics of a linear programming problem allow to 
solve very quickly problems with a great number of 
constraints.  Lastly, the fact of working in the extremal 
charges method with charge and evaluation points instead of 
electrode segments, as other methods do, releases grounding 
grids from geometrical constraints.  

ja

III. DESCRIPTION OF THE COMPUTER PROGRAM 
The computer program that solves problem (4) has been 
developed by the authors using  FORTRAN code. The 
program works with an initial file loaded with all the  
parameters that describe the grounding system, such as, the 
number of  electrodes, the number of ground rods (if there 
exist), the diameter for each electrode, the diameter for each 
ground rod, the number of evaluation points, the number of 
segments into which broken up the electrodes and the rods, 
the number of charges into each segment and the evaluation 
area of the ground surface. After reading the date file the 
program computes the constraint matrix. Finally, the program 
calls to routine E04MBF of the NAG15 library, that solves 

linear programming problems. Once the optimum value of the 
charges for each segment has been computed, it suffices to 
program the above-mentioned formulas to calculate the 
fundamental grid parameters. 

It should  be also noted that the computer time and the 
memory requirements are considerably modest. VAX  8600 
has been  used and CPU time required was about  50 seconds 
for a 16 mesh grid, 176 seconds for a 64 mesh grid and 184 
seconds for a 256 mesh grid. This includes reading the 
geometrical data, computing the constraint matrix, solving the 
LP problem, getting the grid parameters and printing them out.  

IV. GRAPHICAL ANALYSIS OF SOME GROUNDING GRIDS 
To show the applicability of the extremal charges method, we 
present the analysis of several academic grounding system 
configurations, for which the electrical potential and the 
fundamental parameters have been computed. The general 
characteristics of all the examples are  the following ones: 

• Homogeneous soil with resistivity of 100 .mΩ  
• Squared and symmetrical grids of of side, buried    

at 50   
m30

.cm
• Electrodes of diameter. cm2
• Rods 2  long with diameter of  m .3cm
• Fault current intensity of 1  .kA

At first place and in order to check the effectiveness of the 
extremal charges method we have made an exhaustive 
evaluation of the potential, due to the optimal charge, in the 
tangent plane to an equally spaced 64 mesh grid  without rods. 
The result is displayed in Figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Potential in the tangent plane to an equally spaced 64 mesh grid 
without rods  

 
One can observe that the potential takes a unique noticeable 

value on the grid electrodes, whereas an important potential 
fall is produced in the meshes, being this extreme in the grid 
periphery. This behaviour becomes smoother when we space 
out from the grid, and in particular when we are placed on 
earth. However, the potential at the earth surface still depends 
on the grid shape, as we can see in Figure 3, where it is shown 
the potential in a square of over the grid.  234x34 m

In Figure 4 we present the level curves of the potential on 
the earth surface to know something more about its behaviour. 
In the central zone the potential has slight variations, which 
agrees with the fact that the grid has enough number of 
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electrodes; whereas in the periphery and mainly in the vertices 
high potential falls are noticeable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Potential on the earth surface over  an equally spaced 64 mesh grid 
without rods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Level curves of the potential on the earth surface over  an equally 
spaced 64 mesh grid without rods. 
 

For this example the value of the grid resistance is 1 ;482. Ω  
the touch voltage, computed as the maximum difference 
between the grounding grid potential and the potential on the 
earth surface of a square that covers the 
grounding grid, is  and the step voltage, computed as 
the maximum difference between potentials at points of the 
surface earth at a distance of one meter,  is 0  In the 
above described example, we have broken up into 450 
segments one of the eight parts of the grid created by the 
symmetry, so that we are considering 450 different charge 
values. The linear programming algorithm computes the 
optimal charge values to produce constant potential on 3,780 
points on the grid surface. The potential on the tangent plane 
to the grid due to this charge distribution has been calculated 
on 8,281 points, whereas the surface potential has been 
calculated on 3,721 points. 

24.31x4.31 m
kV488.0

.212. kV

A. Improvement of the grid features 
Because of shielding and fringing effects, that are produced 

in equally spaced grids, more current emanates from its 
peripheral electrodes, resulting in touch and step voltages on 
the corners of  the  grid higher than those in the center. To 
overcome these drawbacks, the technique more commonly 
employed is  to place ground rods in the periphery of the grid 
and specially in the vertices. Also we can consider  non 

equally spaced grids, see for instance [12]. Both techniques  
can improve the security with respect to touch and step 
voltage values.  

Following these ideas and to show the versatility of the 
extremal charges method, we have moved progressively the 
grid electrodes from the center of the grid to its periphery 
keeping  the symmetry properties, the electrode lengths and  
the number of meshes. For  each one of the new performances  
we have evaluated  the fundamental parameters. The results 
show an improvement of these values when considering non 
uniform geometries, which are more in keeping with the 
current distribution in squared grounding grids. Logically, the 
minimum value of all parameters does not occur for the same 
performance, so by optimal configuration we mean the one in 
which a better commitment between the parameters is 
achieved. We show the effect that the variation of the grid 
geometry produces by means of the analysis of a 16 mesh grid 
with one rod in each node of its  periphery.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                     
Fig. 5.  Evolution of the fundamental parameters for a 16 mesh grid.  
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Figure 5 displays the evolution of the grid resistance and the 
touch and step voltage values for a 16 mesh grid according to 
different values of the uniformity parameter, [ ].1,1−∈r The 
value zero of this parameter correspond to an equally spaced 
grid. The negative values correspond to move the grid 
electrodes toward the grid center and the positive values 
correspond to move the grid electrodes toward the grid 
periphery. The value 1=r  corresponds to the degenerate case 
in which the peripheral meshes vanish. As shown in Figure 5, 
the touch voltage attains its minimum at a value of the 
uniformity parameter too close to one, so that the distance 
between rods does not fulfil the standards about minimum 
distance between grid electrodes. Therefore, in this case the 
grid resistance and the step voltage values will determine the 
optimal configuration that is obtained for .6.0=r  This 
geometry can be guessed in Figure 7. 

In Figures 6 and 7 we present the level curves of the 
potential on the earth surface for an equally spaced 16 mesh 
grid with rods and its optimized respectively.  At the sight of 
the graphics we can verify that in the optimized grid there is 
less area of high potential. Moreover, the potential gradient in 
central meshes has increased  but not enough as to exceed  the 
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maximum  value of potential gradient, that is still achieved in 
the corners. The behaviour of  the potential on the earth 
surface due to the optimized grid can be seen in Figure 8.   
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  Level curves of the potential on the earth surface over  an equally 
spaced 16 mesh grid with rods.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Level curves of the potential on the earth surface over  an optimized 
16 mesh grid with rods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.  Potential on the earth surface over  an optimized  16 mesh grid with 
rods. 
 

Lastly, we have computed the fundamental parameters of 
different grids and their optimized by using the extremal 
charges method. All of them verify the characteristics 
described in Section IV. The results are presented in Table I, 
where the resistance values are given in Ω  and the voltage 
values in  Note that the greatest reduction in the values of 
the fundamental parameters is obtained when we add rods to 
the grids. However, the optimization of the grids also 
decreases the grid parameter values and as it is independent of 

the use of rods, it can be used as another tool in the grounding 
grid design.  

.kV

 
TABLE I 

FUNDAMENTAL PARAMETERS COMPARISON 
                  

16 mesh grid without rods vertex rods node rods 

R 1.586 1.555 1.516 

opt. R 1.576 1.548 1.509 

Vt 0.567 0.479 0.454 

opt. Vt 0.549 0.466 0.436 

Vs 0.239 0.228 0.217 

opt. Vs 0.236 0.225 0.213 

64 mesh grid without rods vertex rods node rods 

R 1.483 1.462 1.405 

opt. R 1.47 1.451 1.398 

Vt 0.488 0.417 0.376 

opt. Vt 0.462 0.399 0.353 

Vs 0.212 0.203 0.186 

opt. Vs 0.214 0.204 0.185 

 
 
The uniformity parameter is 0  in the three 16 mesh grid 
configurations and this triple coincidence suggests that it is 
the best performance. In the case of 64 mesh grid without rods 
or with rods in the vertices the value of the uniformity 
parameter is where the smallest electrode is 1 long, 
whereas for the 64 mesh grid with rods on all peripheral nodes 

6.

4.0 m5.

,3.0=r that is, the smallest distance between rods is  
We must observe that although  the grid optimization does not 
produce considerable improvements in the grid parameters, 
these are achieved with the same amount of material. Well 
now, to obtain an improvement of the same magnitude, 
keeping the uniform structure of the grids, we could increase 
the electrode radius which would suppose a considerable 
increase of material. For instance, to obtain the value of the 
equivalence resistance of an optimized grid of 16 meshes, 
keeping the meshes uniform, we must use electrodes with a 
radius of 1 which is an increase of 30% of material. If we 
make the same computation for a grid of 64 meshes we need 
electrodes of 1 which is an increase of 50% of material. 
These savings of material are similar to the ones obtained in 
[12].  

.1. m2

cm

4.

2.

cm

 
An analysis of the results showed in Table I suggests that the 
presence of rods in the vertices reduced the touch voltage 
more effectively than considering the geometry optimization. 
Well now, when a uniform grid contains enough electrodes, it 
can be more operative optimizing its design than increasing 
the electrode number. For instance, doubling the number of 
electrodes, in the 64 mesh grid, provides a 3.6% of reduction 
in the equivalence resistance. However, if we add rods in the 
periphery of the grid, which will only suppose and increase of 
26% of material, we obtain a 5.3% of reduction in the 



 6

equivalence resistance and a 5.7% of reduction if, in addition, 
we consider grid optimization. 

[11] E. Bendito and A.M. Encinas, "Extremal Masses in Potential Theory", in 
Proc. 1997 VI-th Int. Coll. on Numer. Anal. Comp. Sci. Appl.,  Ed.: E. 
Minchev,  Academic Publications, pp. 9-19.  [12] L. Huang, X. Chen and H. Yan, "Study of Unequally Spaced Grounding 
Grids", IEEE Trans. on Power Delivery, vol. 10 (2), pp. 716--722,  April 
1995. V. CONCLUSIONS 

The grid design in high voltage substations requires a 
straightforward, versatile and accurate method to compute the 
electrical potential. These properties can be achieved by the 
average potential methods whenever a good electrode 
segmentation is made and the system of equations that 
determines the current density is resolved.  
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